Analysis of the Effectiveness of Brake Insulator in Decreasing the Brake Squeal Noise

Mohd Azman Abdullah

Abstract


Brake functions when two different materials are in contact to reduce a motion. Due to surface irregularity, this contact at high revolution and contact force produces irritating noise called brake squeal. This paper presents the study of introducing brake insulator into the brake assembly in order to reduce the noise. Different configurations of insulators are used in the Finite Element Analysis (FEA). The effectiveness of the brake insulator is analyzed using different type of materials. The finite element model of the brake is developed based on actual drum brake dimensions. FEA is used to for modal analysis to predict the modal frequencies and mode shapes. Various friction coefficients, wheel speeds and brake forces are considered in the analysis. The squeal is shown by positive real part of the baseline graph. The accompanied slip rate in the baseline model of the insulator increases the brake squeal noise significantly.

Full Text:

PDF

References


Abendroth, H. W., B. 2000-01-2774, The Integrated Test Concept: Dyno-Vehicle, Performance-Noise. Sae Conference Proceedings P, 2000. SAE; 1999, 143-148.

M.K. Abdul Hamid, N.I. Shamsudin, A.R. Mat Lazim, A.R. Abu Bakar, Effect of Brake Pad Design On Friction and Wear with Hard Particle Present, Jurnal Teknologi, Vol 71, No 2, 135-138, 2014. http://dx.doi.org/10.11113/jt.v71.3733.

A. R. Mat Lazim, A. R. A. Bakar, M. Kchaou, "The Study of Disc Brake Noise on Three Different Types of Friction Materials", Applied Mechanics and Materials, Vol. 663, pp. 113-118, Oct. 2014.

D.A. Crolla, and A.M. Lang, “Brake Noise andVibration – The state of the art theory. Eds. D.Dowson, C.M. Taylor and M. Godet, ” VehicleTribology. Tribology Series No.18 Leeds, England, 1991.

Kinkaid, N. M., O'reilly, O. M. & Papadopoulos, P. 2003. Automotive Disc Brake Squeal. Journal of Sound And Vibration, 267, 105-166.

Giannini, Oliviero & Francesco, M. 2008. Characterization of the High-Frequency Squeal on a Laboratory Brake Setup. Journal of Sound and Vibration, 310, 394-408.

Hiroyuki, N., Kobayashi, K., Kajita, M. & Chung, C. H. J. 2001. A New Analysis Approach for Motorcycle Brake Squeal Noise and Its Adaptation. SAE International, 01.

Hervé, Benjamin, Sinou, J-J, Mahé, Hervé & Louis, J. 2008. Analysis Of squeal noise and mode coupling instabilities including damping and gyroscopic effects. European Journal of Mechanics-A/Solids, 27, 141-160.

Flint, J., Aneesh, C. & Alwin, S. 2010. New Method to Identify Dynamic Normal Stiffness and Damping of Shims for CAE Modeling. SAE International, 01.

Kappagantu, R. V. 2009. Vibro-Impact Rotor Dampers for Brake Squeal Attenuation-Towards an Insulator Free Design to Quell Squeal. SAE International Journal of Passenger Cars-Mechanical Systems, 1, 1188-1193.

Liu, P., Zheng, H., Cai, C., Wang, Y., Lu, C., Ang, K. & Liu, G. 2007. Analysis of Disc Brake Squeal Using The Complex Eigenvalue Method. Applied Acoustics, 68, 603-615.

Festjens, H., Gaël, C., Franck, R., Jean-Luc, D. & Remy, L. 2012. Effectiveness of Multilayer Viscoelastic Insulators to Prevent Occurrences of Brake Squeal: A Numerical Study. Applied Acoustics, 73, 1121–1128.

Triches, M. & Jordan, R. 2006. Reduction of Squeal Noise from Disc Brake Systems Using Constrained Layer Damping. Applied Composite Materials, 13.

Fritz, Guillaume, Sinou, Jean-Jacques, Jean-Jacques, Duffal, Jean-Marc & Louis, J. 2007. Effects Of Damping on Brake Squeal Coalescence Patterns–Application on a Finite Element Model. Mechanics Research Communications, 34, 181-190.

TricheˆS, M. R. J. N., Gerges, S. N. Y. & Jordan, R. 2008. Analysis of Brake Squeal Noise Using the Finite Element Method: A Parametric Study. Applied Acoustics, 69, 147–162.

Kappagantu, R. V. & Denys, E. 2008. Geometric Tuning of Insulators for Brake Squeal Attenuation. SAE technical paper series, 01.

Abdullah, Mohd Azman, Tamaldin, Noreffendy, Ramli, Faiz Redza, Sudin, Mohd Nizam And Mohamed Muslim, Abdul Mu’in, Design and Development of Low Cost All-Terrain Vehicle (ATV), Applied Mechanics and Materials, Trans Tech Publications, Vols. 663, pp 517-521 (2014), doi:10.4028/www.scientific.net/AMM.663.517.

M.A. Abdullah, A.H. Mohamad and F.R. Ramli, Design Analysis and Fabrication of Fixed-Base Driving Simulator Frame, Journal of Engineering and Technology (JET), Penerbit Universiti, Universiti Teknikal Malaysia Melaka, Vol. 4, No. 2, July-December 2013, ISSN: 2180-3811, 85-101.

M. A. Abdullah, M. R. Mansur, N. Tamaldin and K. Thanaraj, Development of Formula Varsity Race Car Chassis, IOP Conference Series: Materials Science and Engineering, Vols. 50, No. 1, (2013), doi:10.1088/1757-899X/50/1/012001.

Mohd Azman. Abdullah, Muhd Ridzuan. Mansor, Musthafah. Mohd Tahir, Syahibudil Ikhwan. Abdul Kudus, Muhammad Zahir. Hassan and Mad Nasir. Ngadiman, Design, Analysis and Fabrication of Chassis Frame for UTeM Formula VarsityTM Race Car, International Journal of Mining, Metallurgy & Mechanical Engineering (IJMMME) Volume 1, Issue 1, 75-77 (2013) ISSN 2320–4060 (Online).




DOI: http://dx.doi.org/10.2022/jmet.v9i1.858

PRINT ISSN No.: 2180-1053
E ISSN No.: 2289-8123