Measurement of Lithium Transference Number in PMMA Solid Polymer Electrolytes Doped with Micron-sized Fillers

Eric Koh RenWei


PMMA solid polymer electrolytes (SPEs) are much safer than gel polymer electrolytes (GPEs) due to their better mechanical and thermal stabilities. In this study, PMMA-LiCF3SO3-EC, PMMA-LiCF3SO3-EC-Al2O3(≤10µm), and PMMA-LiCF3SO3-EC-SiO2(≤10µm) were prepared using solution cast method, their ionic conductivity and lithium transference number was investigated using electrochemical impedance spectroscopy (EIS) and Bruce-Vincent method, respectively. The experimental result shows that PMMA polymer electrolytes doped with SiO2 (≤10µm) exhibits the highest ionic conductivity of 2.35×10-4 S/cm and lithium transference of 0.263 at room temperature. Linear sweep voltammetry (LSV) and Cyclic voltammetry (CV) analysis also shows that PMMA SPEs incorporated with SiO2 (≤10µm) fillers can achieve electrochemical stability up to 3.2V, exhibits excellent reversibility, and good discharging performance.

Full Text:



Appetecchi, G. B., Croce, F., & Scrosati, B. (1997). High-performance electrolyte membranes for plastic lithium batteries. J. Power Sources, 66(1–2), 77–82.

Aziz, S., Abdulwahid, R., & Hamsan, M. (2019). Proton Conducting Chitosan-Based Polymer Blend Electrolytes with High Electrochemical Stability. Molecules, vol. 24, pp. 1–15, 2019.

Bandara, L. R. A. K., Dissanayake, M. A. K. L., & Mellander, B. (1998). Ionic Conductivity of Plasticized (PEO)-LiCF3SO3 electrolytes. Electrochimica Acta., vol. 43, 1447-1451.

Bandaranayake, C. M., Weerasinghe, W. A. D. S. S., Vidanapathirana, K. P. (2016). A Cyclic Voltammetry study of a gel polymer electrolyte based redox-capacitor. Sri Lankan J. Phys., 16(1), 19-27.

Chandra, M. V. L., Karthikeyan, S., & Selvasekarapandian, S. (2017). Study of PVAc-PMMA-LiCl Polymer Blend Electrolyte and the Effect of Plasticizer Ethylene Carbonate and Nanofiller Titania on PVAc-PMMA-LiCl Polymer Blend Electrolyte. J. Polym. Eng., 37(6), 617–631.

Chauvin, C., Alloin, F., Judeinstein, P., & Foscallo, D. (2006). Electrochemical and NMR Characterizations of Mixed Polymer Electrolytes Based on Oligoether Sulfate and Imide Salts. Electrochim. Acta, 52(3), 1240–1246.

Chew, K. W., & Tan, K. W. (2011). The Effects of Ceramic Fillers on PMMA-based Polymer Electrolyte Salted with Lithium Triflate, LiCF3SO3. Int. J. Electrochem. Sci., 6(11), 5792–5801.

Dhatarwal, P., Choudhary, S., & Sengwa, R. J. (2018). Electrochemical Performance of Li+ Ion Conducting Solid Polymer Electrolytes Based on PEO–PMMA Blend Matrix Incorporated with Various Inorganic Nanoparticles for the Lithium Ion Batteries, Compos. Commun., 10, 11–17.

Ding, Z., Li, J., & An, C. (2020). Review—Interfaces: Key Issue to Be Solved for All Solid-State Lithium Battery Technologies. J. Electrochem. Soc., 167(7), 070541.

Dissanayake, M. A. K. L., Jayathilaka, P. A. R. D., Bokalawala, R. S. P. & Albinsson, I. (2003). Effect of Concentration and Grain size of Alumina Filler on the Ionic Conductivity Enhancement of the (PEO)9LiCF3SO3:Al2O3 Composite Polymer Electrolyte. J. Power Sources, 119–121, 409–414.

Evans, J., Vincent, C. A., & Bruce, P. G. (1987). Electrochemical Measurement of Transference Numbers in Polymer Electrolytes. Polymer (Guildf)., 28(13), 2324–2328.

Faridi, M., Naji, L., Kazemifard, S., & Pourali, N. (2018). Electrochemical Investigation of Gel Polymer Electrolytes Based on Poly (methyl methacrylate) and Dimethylacetamide for Application in Li-Ion Batteries. Chem. Pap., 72(9), 2289–2300.

Hosseinioun, A., Nürnberg, P., Schönhoff, M., & Diddens, D. (2019). Improved Lithium Ion Dynamics in Crosslinked PMMA Gel Polymer Electrolyte. RSC Adv., 9(47), 27574–27582.

Jiang, Z., Han, Q., Wang, S., & Wang, H. (2019). Reducing the Interfacial Resistance in All-Solid-State Lithium Batteries Based on Oxide Ceramic Electrolytes. ChemElectroChem, 6(12), 2970–2983.

Jinisha, B., Manoj, M., & Pradeep, P. (2017). Development of a Novel Type of Solid Polymer Electrolyte for Solid State Lithium Battery Applications Based on Lithium Enriched Poly (ethylene oxide) (PEO)/poly (vinyl pyrrolidone) (PVP) Blend Polymer. Electrochim. Acta, 235, 210–222.

Kurapati, S., Gunturi, S. S., Nadella, K. J., & Erothu, H. (2019). Novel Solid Polymer Electrolyte Based on PMMA:CH3COOLi Effect of Salt Concentration on Optical and Conductivity Studies. Polym. Bull., 76(10), 5463–5481.

Liang, B., Tang, S., Jiang, Q., & Chen, C. (2015). Preparation and Characterization of PEO-PMMA Polymer Composite Electrolytes Doped with Nano-Al2O3. Electrochim. Acta, 169, 334–341.

Lim, Y. S., Jung, H. A., & Hwang, H. (2018). Fabrication of PEO-PMMA-LiClO4-Based Solid Polymer Electrolytes Containing Silica Aerogel Particles for All-Solid-State Lithium Batteries. Energies, 11(10), 2559.

Liu, Y., Lee, J. Y., & Hong, L. (2004). In Situ Preparation of Poly (ethylene oxide)-SiO2 Composite Polymer Electrolytes. J. Power Sources, 129(2), 303–311.

Marcinek, M., Bac, A., & Lipka, P. (2000). Effect of Filler Surface Group on Ionic Interactions in PEG-LiClO4-Al2O3 Composite Polyether Electrolytes. J. Phys. Chem. B, 104(47), 11088–11093.

Musil, M., & Vondrak, J. (2014). Transference Number Measurements on Gel Polymer Electrolytes for Lithium-Ion Batteries. ECS Transactions, 63(1), 315-319.

Osińska, M., Walkowiak, M., & Zalewska, A. (2009). Study of the role of ceramic filler in composite gel electrolytes based on microporous polymer membranes. J. Memb. Sci., vol. 326, no. 2, pp. 582–588.

Pal, P., & Ghosh, A. (2018). Investigation of Ionic Conductivity and Relaxation in Plasticized PMMA-LiClO4 Solid Polymer Electrolytes. Solid State Ionics, 319, 117–124.

Pitawala, H. M. J. C., Dissanayake, M. A. K. L. & Seneviratne, V. A., (2007). Combined Effect of Al2O3 Nano-Fillers and EC Plasticizer on Ionic Conductivity Enhancement in the Solid Polymer Electrolyte (PEO)9LiTf. Solid State Ionics, 178(13–14), 885–888.

Pożyczka, K., Marzantowicz, M., Dygas, J. R. & Krok, F. (2017). Ionic Conductivity and Lithium Transference Number of Poly (ethylene oxide): LiTFSI system. Electrochim. Acta, 227, 127–135.

Saikia, D., Chen, Y. T., Li, Y. K., & Lin, S. I. (2008). Investigation of Ionic Conductivity of Composite Gel Polymer Electrolyte Membranes Based on P(VDF-HFP), LiClO4 and Silica Aerogel for Lithium-Ion Battery. Desalination, 234(1–3), 24–32.

Sivakumar, P., & Gunasekaran, M. (2015). Highly Porous Polymer Electrolytes Based on P(VDF-HFP)/ PEMA with Propylene Carbonate/Diethyl Carbonate for Lithium Battery Applications. Int. J. Energy Power Eng. Int. J. Energy Power Eng. Spec. Issue Energy Syst. Dev., 4(5), 17–21.

Song, C., Xu, C., & Chen, Y. (2015). Enhanced Thermal and Electrochemical Properties of PVDF-HFP/PMMA Polymer Electrolyte by TiO2 nanoparticles. Solid State Ionics, 282, 31–36.

Sun, C. C., You, A. H., & Teo, L. L. (2019). Characterizations of PMMA-based Polymer Electrolyte Membranes with Al2O3. J. Polym. Eng., 39(7), 612–619.

Wang, W. & Alexandridis, P. (2016). Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties. Polymers (Basel)., 8(11), 387.

Xiao, W., Wang, Z., & Zhang, Y. (2017). Enhanced Performance of P(VDF-HFP)-Based Composite Polymer Electrolytes Doped with Organic-Inorganic Hybrid Particles PMMA-ZrO2 for Lithium Ion Batteries. J. Power Sources, 382, 128–134.

Yang, J., Wang, X., Zhang, G., Ma, A., & Chen, W. (2019). High-Performance Solid Composite Polymer Electrolyte for all Solid-State Lithium Battery Through Facile Microstructure Regulation. Front. Chem., 7, 1–11.

Yao, P., Yu, H., & Ding, Z. (2009). Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Front. Chem., 7, 1–17.

Zakariya’u, I., Gultekin, B., Singh, V. (2020). Electrochemical Double-Layer Supercapacitor using Poly(methyl methacrylate) Solid Polymer Electrolyte. High Perform. Polym. 32(2), 201–207.

PRINT ISSN No.: 2180-1053
E ISSN No.: 2289-8123