Tire Model Verification and Comparison Performance using Double Lane Change Test

Mohd Azman Abdullah


Three tire models, namely Dugoff, Calspan and Magic Formula are used in this paper. The models are developed based on their equations in Matlab/Simulink and verified using CarSim software through standard double lane change (DLC) test. The comparison of their performances are carried out on three different vehicles and at three different speeds. Further analyses are performed on the performance of vehicles at different speeds on DLC test. It can be observed that, the DLC test is best carried out at low speed and with less heavy vehicle. The tire models can be used for the future analysis on vehicle lateral and longitudinal controls.

Full Text:



Benekohal, R. F., & Treiterer, J. (1988). CARSIM: Car-following model for simulation of traffic in normal and stop-and-go conditions. Transportation research record, 1194, 99-111.

Dupuy, S., Egges, A., Legendre, V., & Nugues, P. (2001). Generating a 3D simulation of a car accident from a written description in natural language: The Carsim system. arXiv preprint cs/0105023.

Kinjawadekar, T., Dixit, N., Heydinger, G. J., Guenther, D. A., & Salaani, M. K. (2009). Vehicle dynamics modeling and validation of the 2003 Ford Expedition with ESC using CarSim (No. 2009-01-0452). SAE Technical Paper.

Åkerberg, O., Svensson, H., Schulz, B., & Nugues, P. (2003). CarSim: an automatic 3D text-to-scene conversion system applied to road accident reports. In Demonstrations.

Johansson, R., Williams, D., Berglund, A., & Nugues, P. (2004, July). Carsim: a system to visualize written road accident reports as animated 3d scenes. In Proceedings of the 2nd Workshop on Text Meaning and Interpretation (pp. 57-64).

Li, Y., Deng, H., Xu, X., & Wang, W. (2018). Modelling and testing of in-wheel motor drive intelligent electric vehicles based on co-simulation with Carsim/Simulink. IET Intelligent Transport Systems, 13(1), 115-123.

Kinjawadekar, T. (2009). Model-based Design of an Electronic Stability Control System for Passenger Cars Using CarSim and Matlab-Simulink (Doctoral dissertation, The Ohio State University).

Etienne, L., Lúa, C. A., Di Gennaro, S., & Barbot, J. P. (2020). A super-twisting controller for active control of ground vehicles with lateral tire-road friction estimation and CarSim validation. International Journal of Control, Automation and Systems, 18(5), 1177-1189.

Konghui, G., Hao, F., Haitao, D., Dang, L., & Lingge, J. (2008). Development of controller for vehicle stability system based on CarSim RT [J]. Automobile Technology, 3.

Khalili, E., Ghaisari, J., & Danesh, M. (2017, November). Control and analysis of the vehicle motion using sliding mode controller and Carsim software. In 2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA) (pp. 1-5). IEEE.

Zhu, M. T., Shao, C. Z., & Wang, G. L. (2010). Research on road model rebuilding and vehicle simulation of ride comfort based on carsim software [J]. Machinery Design & Manufacture, 10, 78-80.

Egges, A., Nijholt, A., & Nugues, P. (2001). Generating a 3D Simulation of a Car Accident from a Formal Description: the CarSim System.

Zhao, S., & Zhu, L. (2018). Cruise Control System Based on Joint Simulation of CarSim and Simulink. Open Access Library Journal, 5(7), 1-8.

Liu, J., Zhang, L., Xiao, S., & Xin, X. (2014, July). Development of virtual drive HILS system based on VR and CarSim. In Proceedings of the 33rd Chinese Control Conference (pp. 6441-6444). IEEE.

Ji, F. Z., Zhou, X. X., & Zhu, W. B. (2014). Coordinate control of electro-hydraulic hybrid brake of electric vehicles based on CarSim. In Applied Mechanics and Materials (Vol. 490, pp. 1120-1125). Trans Tech Publications Ltd.

Dumitriu, D. N., Chiroiu, V., & Munteanu, L. (2015). Car vertical dynamics simulations using both an in-house 7 DOF model simulator and Carsim commercial software. UPB Scientific Bulletin, Series D: Mechanical Engineering, 77(1), 77-84.

SUN, Y. K., & FAN, X. B. (2017). Research on the application of CarSim in vehicle simulation and development. International Journal, 4.

Abdullah, M. A., Jamil, J. F., & Salim, M. A. (2015, November). Dynamic performances analysis of a real vehicle driving. In IOP Conference Series: Materials Science and Engineering (Vol. 100, No. 1, p. 012017). IOP Publishing.

Abdullah, M. A., & Rahim, M. A. (2016). Driving behaviour analysis of young vehicle drivers. Proceedings of Mechanical Engineering Research Day, 2016, 19-20.

Abdullah, M. A., Jamil, J. F., & Mohan, A. E. (2016). Vehicle dynamics modeling & simulation. Centre for Advanced Research on Energy (CARe), Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, 2016.

Abdullah, M. A., Ibrahim, M., & Abdul Rahim, M. A. H. (2017). Experimental and analysis of vehicle dynamics performance based on driving behavior. Journal of Mechanical Engineering (JMechE), (1), 193-206.

Abdullah, M. A., Jamil, J. F., Yamin, A. M., Nuri, N. M., & Hassan, M. Z. (2015). Vehicle Dynamics. Teaching and Learning Series, Faculty of Mechanical Engineering, Module, 10.

Abdullah, M. A., Salim, M. A., & Nasir, M. M. (2014). Dynamics performances of Malaysian passenger vehicle. ARPN Journal of Engineering and Applied Sciences 10 (17), 7759-7763.

Zhang, H., Zhang, X., & Wang, J. (2014). Robust gain-scheduling energy-to-peak control of vehicle lateral dynamics stabilisation. Vehicle System Dynamics, 52(3), 309-340.

Sierra, C., Tseng, E., Jain, A., & Peng, H. (2006). Cornering stiffness estimation based on vehicle lateral dynamics. Vehicle System Dynamics, 44(sup1), 24-38.

Zhang, H., & Wang, J. (2015). Vehicle lateral dynamics control through AFS/DYC and robust gain-scheduling approach. IEEE Transactions on Vehicular Technology, 65(1), 489-494.

Oudghiri, M., Chadli, M., & El Hajjaji, A. (2008). Robust observer-based fault-tolerant control for vehicle lateral dynamics. International Journal of vehicle design, 48(3-4), 173-189.

Du, H., Zhang, N., & Naghdy, F. (2011). Velocity-dependent robust control for improving vehicle lateral dynamics. Transportation research part C: emerging technologies, 19(3), 454-468.

Du, H., Zhang, N., & Dong, G. (2010). Stabilizing vehicle lateral dynamics with considerations of parameter uncertainties and control saturation through robust yaw control. IEEE Transactions on Vehicular Technology, 59(5), 2593-2597.

Mammar, S., Glaser, S., & Netto, M. (2006, June). Vehicle lateral dynamics estimation using unknown input proportional-integral observers. In 2006 American control conference (pp. 6-pp). IEEE.

El Hajjaji, A., Chadli, M., Oudghiri, M., & Pages, O. (2006, June). Observer-based robust fuzzy control for vehicle lateral dynamics. In 2006 American Control Conference (pp. 6-pp). IEEE.

Liaw, D. C., Chiang, H. H., & Lee, T. T. (2007). Elucidating vehicle lateral dynamics using a bifurcation analysis. IEEE Transactions on Intelligent Transportation Systems, 8(2), 195-207.

Huang, Y., Liang, W., & Chen, Y. (2021). Stability Regions of Vehicle Lateral Dynamics: Estimation and Analysis. Journal of Dynamic Systems, Measurement, and Control, 143(5).

Sakthivel, R., Mohanapriya, S., Ahn, C. K., & Selvaraj, P. (2018). State estimation and dissipative-based control design for vehicle lateral dynamics with probabilistic faults. IEEE Transactions on Industrial Electronics, 65(9), 7193-7201.

Su, J., & Chen, W. H. (2016, March). Fault diagnosis for vehicle lateral dynamics with robust threshold. In 2016 IEEE International Conference on Industrial Technology (ICIT) (pp. 1777-1782). IEEE.

Su, J., & Chen, W. H. (2016, March). Fault diagnosis for vehicle lateral dynamics with robust threshold. In 2016 IEEE International Conference on Industrial Technology (ICIT) (pp. 1777-1782). IEEE.

Jin, X., Yin, G., Li, Y., & Li, J. (2016). Stabilizing vehicle lateral dynamics with considerations of state delay of AFS for electric vehicles via robust gain‐scheduling control. Asian Journal of Control, 18(1), 89-97.

Jin, X., Yin, G., Li, Y., & Li, J. (2016). Stabilizing vehicle lateral dynamics with considerations of state delay of AFS for electric vehicles via robust gain‐scheduling control. Asian Journal of Control, 18(1), 89-97.

Farrelly, J., & Wellstead, P. (1996, September). Estimation of vehicle lateral velocity. In Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro (pp. 552-557). IEEE.

Peng, H. (1993). Vehicle lateral control for highway automation.

Mohanapriya, S., Sakthivel, R., & Almakhles, D. J. (2020). Repetitive control design for vehicle lateral dynamics with state-delay. IET Control Theory & Applications, 14(12), 1619-1627.

Varrier, S., Koenig, D., & Martinez, J. J. (2012, December). Robust fault detection for vehicle lateral dynamics. In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) (pp. 4366-4371). IEEE.

Kuiper, E. V. O. J., & Van Oosten, J. J. M. (2007). The PAC2002 advanced handling tire model. Vehicle system dynamics, 45(S1), 153-167.

Tezuka, Y., Ishii, H., & Kiyota, S. (2001). Application of the magic formula tire model to motorcycle maneuverability analysis. JSAE review, 22(3), 305-310.

Mashadi, B., Mousavi, H., & Montazeri, M. (2015). Obtaining relations between the Magic Formula coefficients and tire physical properties. International Journal of Automotive Engineering, 1, 911-922.

Mizuno, M. (2003). Development of tire side force model based on magic formula with the influence of tire surface temperature. R&D Review of Toyota CRDL, 38(4), 17-22.

Cabrera, J. A., Castillo, J. J., Pérez, J., Velasco, J. M., Guerra, A. J., & Hernández, P. (2018). A procedure for determining tire-road friction characteristics using a modification of the magic formula based on experimental results. Sensors, 18(3), 896.

Pacejka, H. B., & Bakker, E. (1992). The magic formula tyre model. Vehicle system dynamics, 21(S1), 1-18.

Boyle, S. (2019, December). Pacejka Magic Formula Tire Model Parser. In 2019 International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 517-518). IEEE.

Li, B., Yang, X., & Yang, J. (2014). Tire model application and parameter identification-a literature review. SAE International Journal of Passenger Cars-Mechanical Systems, 7(2014-01-0872), 231-243.

Guang-sheng, R. E. N. (2001). Optimization of Curve Fitting Used in Development of Magic Formula Tire Model [J]. Journal of Chongqing University (Natural Science Edition), 3.

Salaani, M. K., Heydinger, G. J., & Grygier, P. A. (2006). Measurement and Modeling of Tire Forces on a Low Coefficient Surface. SAE Transactions, 392-399.

Allen, R. W., Magdaleno, R. E., Rosenthal, T. J., Klyde, D. H., & Hogue, J. R. (1995). Tire modeling requirements for vehicle dynamics simulation. SAE transactions, 484-504.

Kasprzak, E. M., & Gentz, D. (2006). The formula sae tire test consortium-tire testing and data handling (No. 2006-01-3606). SAE Technical Paper.

Kasprzak, E. M., Lewis, K. E., & Milliken, D. L. (2006). Inflation pressure effects in the nondimensional tire model. SAE Transactions, 1781-1792.

Sayers, M. W., & Han, D. (1996). A generic multibody vehicle model for simulating handling and braking. Vehicle system dynamics, 25(S1), 599-613.

Sadeghi, S., & Ahmadian, M. T. (2001). Tire Modeling with Nonlinear Behavior for Vehicle Dynamic Studies.

Nasir, M. Z. M., Hudha, K., Amir, M. Z., & Kadir, F. A. A. (2012). Modelling, simulation and validation of 9 DOF vehicles model for automatic steering system. In Applied Mechanics and Materials (Vol. 165, pp. 192-196). Trans Tech Publications Ltd.

Allen, R. W., Rosenthal, T. J., & Chrstos, J. P. (1997). A vehicle dynamics tire model for both pavement and off-road conditions (No. 970559). SAE Technical Paper.

Bergman, W., & Clemett, H. R. (1975). Tire cornering properties. Tire Science and Technology, 3(3), 135-163.

Ding, N., & Taheri, S. (2010). A modified Dugoff tire model for combined-slip forces. Tire Science and Technology, 38(3), 228-244.

Chen, L., Bian, M., Luo, Y., & Li, K. (2013, July). Maximum tire road friction estimation based on modified Dugoff tire model. In 2013 international conference on mechanical and automation engineering (pp. 56-61). IEEE.

Bian, M., Chen, L., Luo, Y., & Li, K. (2014). A dynamic model for tire/road friction estimation under combined longitudinal/lateral slip situation (No. 2014-01-0123). SAE Technical Paper.

Song, S., Chun, M. C. K., Huissoon, J., & Waslander, S. L. (2014, June). Pneumatic trail based slip angle observer with Dugoff tire model. In 2014 IEEE Intelligent Vehicles Symposium Proceedings (pp. 1127-1132). IEEE.

Chen, L., Bian, M., Luo, Y., & Li, K. (2015). Estimation of road-tire friction with unscented Kalman filter and MSE-weighted fusion based on a modified Dugoff tire model (No. 2015-01-1601). SAE Technical Paper.

He, R., Jimenez, E., Savitski, D., Sandu, C., & Ivanov, V. (2016). Investigating the parameterization of dugoff tire model using experimental tire-ice data. SAE International Journal of Passenger Cars-Mechanical Systems, 10(2016-01-8039), 83-92.

Dugoff, H., Fancher, P. S., & Segel, L. (1970). An analysis of tire traction properties and their influence on vehicle dynamic performance. SAE transactions, 1219-1243.

ZHOU, L., & ZHANG, X. W. (2012). Simulation of Vehicle Dynamics in Tire Blow-out Process Based on Dugoff Tire Model [J]. Computer Simulation, 6.

Villagra, J., D’Andréa-Novel, B., Fliess, M., & Mounier, H. (2011). A diagnosis-based approach for tire–road forces and maximum friction estimation. Control engineering practice, 19(2), 174-184.

Bhoraskar, A., & Sakthivel, P. (2017, January). A review and a comparison of Dugoff and modified Dugoff formula with Magic formula. In 2017 International Conference on Nascent Technologies in Engineering (ICNTE) (pp. 1-4). IEEE.

Kissai, M., Monsuez, B., Tapus, A., & Martinez, D. (2017, September). A new linear tire model with varying parameters. In 2017 2nd IEEE International Conference on Intelligent Transportation Engineering (ICITE) (pp. 108-115). IEEE.

Han, K. S., Lee, E., & Choi, S. (2015, October). Estimation of the maximum lateral tire-road friction coefficient using the 6-DoF sensor. In 2015 15th International Conference on Control, Automation and Systems (ICCAS) (pp. 1734-1738). IEEE.

Jin, X., Yin, G., & Lin, Y. (2014). Interacting multiple model filter-based estimation of lateral tire-road forces for electric vehicles (No. 2014-01-2321). SAE Technical Paper.

ISO 3888-2:2011, Passenger cars - Test track for a severe lane-change manoeuvre - Part 2: Obstacle avoidance.

Peng, Y., & Yang, X. (2012). Comparison of various double-lane change manoeuvre specifications. Vehicle system dynamics, 50(7), 1157-1171.

Lee, J., & Chang, H. J. (2018). Explicit model predictive control for linear time-variant systems with application to double-lane-change maneuver. Plos one, 13(12), e0208071.

Katzourakis, D., de Winter, J. C., de Groot, S., & Happee, R. (2012). Driving simulator parameterization using double-lane change steering metrics as recorded on five modern cars. Simulation Modelling Practice and Theory, 26, 96-112.

El Hajjaji, A., & Ouladsine, M. (2001, September). Modeling human vehicle driving by fuzzy logic for standardized ISO double lane change maneuver. In Proceedings 10th IEEE International Workshop on Robot and Human Interactive Communication. ROMAN 2001 (Cat. No. 01TH8591) (pp. 499-503). IEEE.

Arefnezhad, S., Ghaffari, A., Khodayari, A., & Nosoudi, S. (2018). Modeling of double lane change maneuver of vehicles. International Journal of Automotive Technology, 19(2), 271-279.

Hatipoglu, C., Ozguner, U., & Redmill, K. A. (2003). Automated lane change controller design. IEEE transactions on intelligent transportation systems, 4(1), 13-22.

Huang, C., Naghdy, F., & Du, H. (2016, November). Model predictive control-based lane change control system for an autonomous vehicle. In 2016 IEEE Region 10 Conference (TENCON) (pp. 3349-3354). IEEE.

Kutluay, E., & Winner, H. (2012, December). Assessment methodology for validation of vehicle dynamics simulations using double lane change maneuver. In Proceedings of the 2012 Winter Simulation Conference (WSC) (pp. 1-12). IEEE.

Naude, A. F., & Steyn, J. L. (1993). Objective evaluation of the simulated handling characteristics of a vehicle in a double lane change manoeuvre (No. 930826). SAE Technical Paper.

Sledge Jr, N. H., & Marshek, K. M. (1997). Comparison of ideal vehicle lane-change trajectories. SAE transactions, 2004-2027.

Hess, D., & Sattel, T. (2011, October). Double-lane change optimization for a stochastic vehicle model subject to collision probability constraints. In 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC) (pp. 206-211). IEEE.

Yang, X., & Gander, J. (2011). Driver's Preview Strategy and its Impact on NATO Double Lane Change Maneuver. SAE International Journal of Materials and Manufacturing, 4(1), 1025-1035.

Forkenbrock, G. J., Garrott, W. R., Heitz, M., & O'Harra, B. C. (2003). An experimental examination of double lane change maneuvers that may induce on-road, untripped, light vehicle rollover. SAE transactions, 1128-1144.

Angelis, S., Tidlund, M., Leledakis, A., Lidberg, M., Nybacka, M., & Katzourakis, D. (2014). Optimal steering for double-lane change entry speed maximization. In ACEV'14 International symposium on advanced vehicle control, 22-26 September 2014, Tokyo, Japan. Society of Automotive Engineers.

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate research, 30(1), 79-82.

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE). Geoscientific Model Development Discussions, 7(1), 1525-1534.

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific model development, 7(3), 1247-1250.

Maiorov, V. N., & Crippen, G. M. (1994). Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. Journal of molecular biology, 235(2), 625-634.

Salmon, T. O., & van de Pol, C. (2006). Normal-eye Zernike coefficients and root-mean-square wavefront errors. Journal of Cataract & Refractive Surgery, 32(12), 2064-2074.

Applegate, R. A., Ballentine, C., Gross, H., Sarver, E. J., & Sarver, C. A. (2003). Visual acuity as a function of Zernike mode and level of root mean square error. Optometry and Vision Science, 80(2), 97-105.

Huffman, G. J. (1997). Estimates of root-mean-square random error for finite samples of estimated precipitation. Journal of Applied Meteorology, 36(9), 1191-1201.

Hespanha, J. P. (2003). Root-mean-square gains of switched linear systems. IEEE Transactions on Automatic Control, 48(11), 2040-2045.

DiStefano, C., Liu, J., Jiang, N., & Shi, D. (2018). Examination of the weighted root mean square residual: Evidence for trustworthiness?. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 453-466.

O’Donovan, T. S., & Murray, D. B. (2007). Jet impingement heat transfer–Part I: Mean and root-mean-square heat transfer and velocity distributions. International journal of heat and mass transfer, 50(17-18), 3291-3301.

PRINT ISSN No.: 2180-1053
E ISSN No.: 2289-8123