Railway Wheel Wear Analysis
Abstract
Full Text:
PDFReferences
Auciello, J., Ignesti, M., Marini, L., Meli, E., & Rindi, A. (2013). Development of a model for the analysis of wheel wear in railway vehicles. Meccanica, 48(3), 681-697.
Braghin, F., Lewis, R., Dwyer-Joyce, R. S., & Bruni, S. (2006). A mathematical model to predict railway wheel profile evolution due to wear. Wear, 261(11-12), 1253-1264.
Pombo, J., Ambrosio, J., Pereira, M., Lewis, R., Dwyer-Joyce, R., Ariaudo, C., & Kuka, N. (2011). Development of a wear prediction tool for steel railway wheels using three alternative wear functions. Wear, 271(1-2), 238-245.
Pombo, J., Ambrósio, J., Pereira, M., Lewis, R., Dwyer-Joyce, R., Ariaudo, C., & Kuka, N. (2010). A railway wheel wear prediction tool based on a multibody software. Journal of theoretical and applied mechanics, 48, 751-770.
Ignesti, M., Malvezzi, M., Marini, L., Meli, E., & Rindi, A. (2012). Development of a wear model for the prediction of wheel and rail profile evolution in railway systems. Wear, 284, 1-17.
Stock, R., Eadie, D. T., Elvidge, D., & Oldknow, K. (2011). Influencing rolling contact fatigue through top of rail friction modifier application–A full scale wheel–rail test rig study. Wear, 271(1-2), 134-142.
Oldknow, K. D., & Eadie, D. T. (2010, January). Top of rail friction control as a means to mitigate damaging lateral loads due to overbalanced operation of heavy axle load freight traffic in shared high speed rail corridors. In 2010 Joint Rail Conference (pp. 27-35). American Society of Mechanical Engineers Digital Collection.
Reddy, V., Chattopadhyay, G., & Hargreaves, D. J. (2006). Analysis of rail wear data for evaluation of lubrication performance.
Matjeke, V. J., Van Der Merwe, J. W., Phasha, M. J., Bolokang, A. S., & Moopanar, C. (2016). Effect of yield strength on wear rates of railway wheels. Journal of the Southern African Institute of Mining and Metallurgy, 116(10), 947-955.
Zobory, I. (1997). Prediction of wheel/rail profile wear. Vehicle System Dynamics, 28(2-3), 221-259.
Braghin, F., Bruni, S., & Resta, F. (2002). Wear of railway wheel profiles: a comparison between experimental results and a mathematical model. Vehicle System Dynamics, 37(sup1), 478-489.
Abdullah, M. A., Ramli, F. R., & Lim, C. S. (2014). Railway Dynamics Analysis Using Lego Mindstorms. In Applied Mechanics and Materials (Vol. 465, pp. 13-17). Trans Tech Publications Ltd.
Abdullah, M. A., Hassan, N. A., Foat, N. A. M., Shukri, M. F. A. M., & Mohan, A. E. (2018). Swaying Phenomenon of Express Railway Train in Malaysia, Proceedings of Innovative Research and Industrial Dialogue’18, July 2018, pp. 98-99.
Habeeb, H. A., Mohan, A. E., Abdullah, M. A., Abdul, M. H., & Tunggal, D. (2020). Performance Analysis of Brake Discs in Trains. Jurnal Tribologi, 25, 1-15.
Nextsense. (2020). Highly precise profile measurement for predictive maintenance. Retrieved from: https://www.nextsense-worldwide.com/en/industries/railway.html. Last accessed: 12/12/2020.
Pradhan, S., Samantaray, A. K., & Bhattacharyya, R. (2018). Prediction of railway wheel wear and its influence on the vehicle dynamics in a specific operating sector of Indian railways network. Wear, 406, 92-104.
De Arizon, J., Verlinden, O., & Dehombreux, P. (2007). Prediction of wheel wear in urban railway transport: comparison of existing models. Vehicle System Dynamics, 45(9), 849-866.
DOI: http://dx.doi.org/10.2022/jmet.v12i2.5911
PRINT ISSN No.: 2180-1053
E ISSN No.: 2289-8123