Anisotropic damage modeling: application to delamination in laminated composite structures
Abstract
The degradation of composite materials laminates has been the object of many studies for more than two decades The goal of these studies is to allow the dimensioning of the structures by taking into account the various mechanisms of damage leading to the ruin of material. The total rupture of a laminated composite passes through several types of damages: cracking of the matrix; rupture of the interface matrix fiber; delamination interplis; rupture of fibers. The phenomenon of delamination, although it appears tardily in the history of degradation of the laminate, its propagation is much faster and would lead directly to the ruin of structures. The objective of this article is to develop from an anisotropic damage a model of delamination making it possible to predict the growth of this phenomenon in the laminated structures
Full Text:
PDFReferences
Aiello. G, Giancarli. L, Golfier. H and Maire. J-F. (2003). Modeling of mechanical behaviorand design criteria for SiCf composite structures in fusion reactors. Fusion Engineering and design 65, Elsevier.
Allix O, Lévèque D, Perret L. (1998). Identification and forecast of delamination in composite laminates by an interlaminar interface model. Comp. Scien. And Techn.58, Elsevier
Arciniega Aleman. R. A. (2005). On a tensor-based finite element model for the analysis of shell structures. Dessertation submitted to the Office of Graduate of Texas A & M University, in partial fulfilment of requirements for degree of PhD.
Barbero E. J, Lonetti Paolo. (2002). An inelastic damage model for fiber reinforced laminates. Inelastic Rev. 3.
Benzerga D. (2008). Modélisation de l’endommagement anisotrope des structures géométriquement non linéaires à paroi mince en matériaux composites : Application au délaminage. Thèse de doctorat de l’Université d’Artois
Carol I, Rizzi E and Willam K. (2001a). On the formulation of anisotropic elastic degradation. I. Theory on a pseudo-logarithmic damage tensor rate. Int. J. solids and structures.
Carol I, Rizzi E and Willam K. (2001b). On the formulation of anisotropic elastic degradation. II. Generalised pseudo-Rankine model for tensile damage. Int. J. solids and structures.
Cordebois J.P., Sidoroff F. (1982). Endommagement anisotrope en élasticité et plasticité . J. Méc. Théorique et appliquée.
Daudeville L., Ladevèze P. (1993). A damage mechanics tool for laminate delamination. Composite Structures 25 547-555.
Ghosh A, Sinha P.K. (2005). Initiation and propagation of damage in laminated composite shells due to low velocity impact. Woodhead publishing Ltd, UCrash, Vol. 10.
Halam D., Dragon A. (1998), “An anisotropic model of damage and frictional sliding for brittle materials”. Eur. J. Mech., A/ solids.
Kreja. I, Schmidt. R. (2005). Large rotations in first-order shear deformation FE analysis of laminated shells. Int. Journ. of Nonlinear Mechanics, ed. Elsevier.
Ladevèze P. (1983). Sur une théorie de l’endommagement anisotrope. Rapport Interne 34, Laboratoire de Mécanique et Technologie Cachan.
Ladevèze P. (1986) . About the damage mechanic of composites. In C. Bathias et D. Menkès,éditeurs : Comptes-rendus des JNC5, Paris. Pluralis Publication.
Ladevèze, P and Lubineau. G. (2003). On a damage mesomodel for laminates:micromechanics basis and improvement. Mechanics of Materials.
Mariage J. F. (2003). Simulation numérique de l’endommagement ductile en forgeage de pièces massives. Thèse de l’Université de Technologie de Troyes.
Murakami S., Kamiya K. (1997). Constitutive and damage evolution equations of elastic brittle materials based on irreversible thermodynamics. Int. J. Mech. Sci.
Rouabhi A. (2004). Comportement et fragmentation dynamique des matériaux quasi fragiles. Thèse de l’Ecole Nationale Supérieure des Mines de Paris.
Yuris. A. D, Jie. Q. (2001). Hybrid transient-parameter AE analysis of histories of damage micromechanisms in composites. Proc. SPIE Vol. 4335, p. 361-370.
DOI: http://dx.doi.org/10.2022/jmet.v9i1.1580
PRINT ISSN No.: 2180-1053
E ISSN No.: 2289-8123