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ABSTRACT 

 

This work describes the early segmentation results in the progress of a mechanism design process 

to produce simple planar machines that could approximate a shape change defined by a set of 

curves with significant differences in arc length. The design profiles vary from one another by a 

combination of rigid-body displacement and shape change that includes significant differences in 

arc length. Where previous rigid-body shape-change work focused on mechanisms composed of 

rigid links and revolute joints to approximate curves of roughly equal arc length, this work 

introduces prismatic joints into the mechanisms in order to produce the different desired arc 

lengths. The first step is to convert the design profiles into piecewise linear curves, referred to as 

target profiles. The piecewise linear representation that proves most useful has points identified 

along the curve at roughly equal distances. The second step is to compare segments of the target 

profiles seeking those that are best approximated by a common rigid body and those that share 

curvature similarities allowing for the introduction of a prismatic joint. In the end, implementing 

the procedure in MATLAB could create a chain of rigid bodies that are joined by revolute and 

prismatic joints. The chain can closely estimate the shape of a set of design profiles. 
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1.0 INTRODUCTION 

 

Some machines like aircraft wings, for instance, rely on their ability to fluctuate between 

specific shapes in a pre-determined way. For instance, evaluate the usefulness of diverse 

wing airfoils for cruising as opposed to active dog-fighting situations. Many military 

agencies are always exploring for a better technology that will enable wings to actively 

shift shapes to achieve wide variety of flight characteristics as well as surface control, 

which might be impossible with the state-of-the-art wings (Weishaar, 2006). The rewards 

from such a shape-changing mechanism that can morph among specified profiles and then 
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hold-on to the shapes is noteworthy. Meanwhile, others like (Lu & Kota, 2003) applied 

some optimization algorithms for discrete topology in compliant mechanisms for shifting 

the shapes of parabola antennas. 

 

Many methods can be used to achieve a morphing capacity such as compliant mechanisms 

and memory alloy materials as described in literature like (Trease, Moon & Kota, 2005), 

(Lateş, Căşvean & Moica, 2017) and (Rubbert et al., 2017). Besides these, there are also 

works with shape-memory alloys that can be actuated by electrical signals or heat such 

as by (Lobo, Almeida & Guerreiro, 2015), (Mohd Jani et al., 2013), and (Nespoli et al., 

2010). Concerns with these methods include practical cost and limited displacement size. 

Shape-changing rigid body mechanisms have been proposed as an alternate to the above 

technologies to achieve the range of displacement needed from a rigid-body linkage 

mechanism with a well-established set of mechanical design principles (Korte, 2006).   

 

Consequently, the rigid-body shape-changing mechanisms use the concept of breaking 

up the curves into segments. Each segment is optimized in shape and length so that it can 

best approximate the same portion on each target profile. Figure 1 depicts the outcome of 

such segmentation process. The shape of each segment is basically the mean shape of that 

portion. Researchers in (Murray, Schmiedeler & Korte, 2008) suggested adding up binary 

links to each segment in order to connect the segment to fixed pivots while achieving 

lower degree-of-freedom when the system change shapes.   

 

The presently available synthesis methods for designing shape-changing rigid-body 

mechanisms better address problems with profiles of roughly the same arc length. This is 

a serious limitation of the current methodology. Hence, this paper includes developments 

to the theory that introduce prismatic joints into the chain of bodies used to approximate 

design profiles. 

 

This paper presents the segmentation methodology for profiles with significant 

differences in arc length that are expected to include prismatic joints in their mechanized 

form. First, design profiles are converted into target profiles. Then, the curvatures of the 

profiles are compared to allow for the introduction of a prismatic joint. Finally, the 

remaining segments of the design curves are approximated with rigid bodies connected 

by revolute joints. 

 
 

2.0 METHOD 

 

A design profile is a curve defined by (Murray, Schmiedeler & Korte, 2008) such that an 

ordered set of points on the curve and the arc length between any two such points can be 

determined. In earlier rigid-body shape-change work, design profiles were converted into 

piecewise linear target profiles where each target profile contained the same number of 

points.  When the curves were assumed to be of roughly equal arc length, this distribution 

of points resulted in curves where each piecewise linear segment is roughly equal in 

length. Given that the curves may now possess large differences in arc length, 

representation of different design profiles by the same number of points could produce 

individual linear segments of considerably different length. 

 

The length of segment in a piecewise linear curve is 
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Si = √(xi+1 − xi)2 + (yi+1 − yi)2,  i = 1, … n − 1                                (1) 

 

Note that i is the point number on the profile curve.  The total length of the curve is then 

 

Lj =  ∑ Si
n−1
i=1                                                                               (2) 

 

Note that j is the curve number on the profile set. Given that we seek to represent a curve 

by desired segments of length Sd,  

 

mj = 𝐿𝑗  Sd⁄                                                                                     (3) 

 

Hence, we get the first guess at the number of points that needs to be on the curve as 

shown in Equation (4). The mj number of segments is actually rounded down to make 

errors on the side too short. 

 

nj = maj
+ 1                                                                              (4) 

 

Equation (2) shows that as all the segment length Si where i = 2, 3, 4… N, the last point 

on the curve. However, in Equations (3) and (4), the new number of segments mj and new 

number of points nj are determined. These numbers must be integer. 

 

The next step is to distribute the n points (which are nj of that profile curve) equidistantly 

along the curve.  Then, this new attribute of the curve is reviewed.  Manipulating Equation 

(3), check the segment length. Basically, this is refinement step aimed at getting the 

segment length as close as possible to the desired segment length. The result is the actual 

segment length as shown in Equation (5). 

 

Saj
= 𝐿𝑗 𝑚𝑎𝑗

⁄                                                                                    (5) 

 

Actually, to get the actual segment length as close as possible to the desired segment 

length, we increase or decrease the number of points n by 1 as we compare Saj
 and Sd. 

Figure 1(a) shows the part in the software being developed, that manipulate the segment 

length in all the curves in concern. On the other hand, in Figure 1(b), the points have been 

redistributed by segment length. The desired segment length here is 3 units. As a result, 

the number of points also changes in both the curves in order to get as close as possible 

to that desired value. 

 

3.0 CURVATURE CALCULATIONS 

 

With the 3 data points, the curvature of the middle point (jth point) is calculated.  This will 

mean the first data point and the last one cannot have their curvature calculated as such 

since these points are not in the middle of the first or the last 3 points. However, the first 

point will assume the curvature of the second point the last point (Nth point) will assume 

that which is before it i.e. (N-1) th point.   

 

It is known that the curve can be approximated by circles of various radii.  The radius of 

each circle is conversely proportional to its curvature. Thus, the curvature is 
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 =  1 𝑟⁄                                                                                      (6) 

 

and the center point for the circle is (a, b). 

 

 
Figure 1.  (a)  This shows a continuous design profile. (b)  This shows a target profile curve with 9 pieces 

at a certain average piece length shown with two points per piece. The smaller mean piece length of the 

target profiles seems to approximate well the shape of the design profiles. 

 

The curvature will also have sign that is positive or negative. The polarity is determined 

by considering the vectors formed by the 3 points considered at a time. Take points 1, 2, 

and 3 to be represented by {x1, y1}, {x2, y2}, and {x3, y3} respectively. Then, take the two 

direction vectors P1 and P2 as 

 

𝐏𝟏 = {
x2 − x1

y2 − y1
} = {

dx1

dy1
} 

𝐏𝟐 = {
x3 − x2

y3 − y2
} = {

dx2

dy2
} 

 

Hence the cross product becomes 

 

𝐂𝐏 = 𝐏𝟏 × 𝐏𝟐 = (dx1dy2 − dy1dx2)𝒌                                                            (7) 

  

If the magnitude CP = |CP| is negative, the curvature  also becomes negative. Another 

term that can be derived is the angle  between the vectors P1 and P2.  Next, the dot 

product must be calculated as shown by Equation (8). 

 

DP = 𝐏𝟏 ∙ 𝐏𝟐 = (dx1dx2 + dy1dy2)                                                              (8) 

(a) 

(b) 

A piece 

A point 
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Since P1 × P2 = |P1||P2| sin θ and P1 ∙ P2 = |P1||P2| cos θ, it follows that 

 

θ = tan−1(|𝐏𝟏 × 𝐏𝟐| (P1 ∙ 𝐏𝟐)⁄ )                                                                   (9) 

 

The curvature distribution in its original form possesses lots of spikes especially as the 

curvature is changing signs.  The conditions of the spikes depend on how smooth each 

curve is.  To assist on selecting the points for each prismatic joint, the curvature plot might 

need to be smoothened.  However, doing so will also change the corresponding profiles.  

The user then will have to decide whether the resulting changes to the profiles are 

acceptable or not. 

 

Murray, Schmiedeler, and Korte (2008) described vividly of a concept to rotate and 

translate a curve to another curve provided they both have the same number of points. 

Shamsudin and Murray (2013) even expanded the idea to also include a scaling factor. 

However, in the rigid body shape-changing case, the scaling is seldom used. If there is a 

set of p design profiles, let the jth target profile be defined by zji
= {xj yj}T, i = 1, … , n.   

 

𝐙𝐣𝐢
= 𝐀𝐳𝐣𝐢

+ 𝐝                                                                                (10) 

 

where the rotational matrix and translational vector are defined as 

 

𝐀 = [
cos θ − sin θ
sin θ cos θ

]                                                                  (11) 

 

and 

 

𝐝 =  {
d1

d2
}                                                                                     (12) 

 

Equation (10) can be manipulated to achieve optimum conditions that result in  

 

𝐝 =
1

n
(zkT

− AzjT
)                                                                     (13) 

 

where it is defined that  

𝐳𝐣𝐓
= ∑ zji

= {xjT
yjT}Tn

i=1                                                                   (14) 

 

The rotation angle θ for 𝐀 can be calculated as 

 

𝑁𝑢𝑚 = (1 𝑛⁄ )(xkT
yjT

− xjT
ykT

) − ∑ (xkT
yjT

− xjT
ykT

)n
i=1                                    (15a) 

 

𝐷𝑒𝑛 = ∑ (𝑥𝑗𝑖
𝑥𝑘𝑖

− 𝑦𝑗𝑖
𝑦𝑘𝑖

)𝑛
𝑖=1 − (1 𝑛⁄ )(𝑥𝑗𝑇

𝑥𝑘𝑇
− 𝑦𝑗𝑇

𝑦𝑘𝑇
)                                    (15b) 

 

θ = tan−1(𝑁𝑢𝑚 𝐷𝑒𝑛⁄ )                                               (15c) 

 

Now, with θ and 𝐝 known, the profile particular j profile can be shifted to the k profile.   
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Figure 2.  The mean profile is shown here in thick lines brought back in optimized position to each design 

profile. 

 

Mean segment was explained in detail by (Korte, 2006) and the concept is shown in 

Figure 2, where a mean profile tries to approximate the three different shapes. 

Corresponding section of profiles that have same number of points can be shifted together 

using the minimized distance algorithm and then the mean profile of the section can be 

generated by 

 

zmi
=

1

p
(z1i

− ∑ zji

p
j=2 )                                                                    (16) 

 

where   i = 1, … , n.                                                   

 

All profiles that share the same number of points can be rotated and translated to a fixed 

profile, say target profile 1.  Then from each point, using Equation (16), the mean segment 

or profile can be generated.  Figure 2 also shows that the one mean profile is optimally 

positioned back to the 3 profiles.  Furthermore, the concept of error E is also useful where 

the maximum value of the point-to-point distances is calculated as the mean profile is 

placed back to the design profiles. This error reading can be used for further 

manipulations. 

 

4.0 CURVATURE MANIPULATION 

 

Oftentimes, the curvature distributions from the curves are filled with spikes. Direct 

calculation of a curvature from 3 points at a time may probably lead to that.  However, 

the curvature values can be manipulated with a scheme, and the resulting new curvature 

can be used to regenerate the geometric curve it now represents.  Should the regenerated 

curve be still close to the original profile curve, then data from the curvature distribution 

The mean profile is placed 

back to approximate the 3 

shapes. 
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can be used for further operations. 

 

The scheme that is suggested here is shown in Equations (17) through (19) 

 

̃1 = (2 3⁄ )1 + (1 3⁄ )2                                                                       (17) 

 

and for middle points, the new curvatures become 

 

̃i = (1 4⁄ )i−1 + (1 2⁄ )i + (1 4⁄ )i+1                                                   (18) 

 

where i = 2,3,4, …, N-1, then 

 

̃N = (2 3⁄ )N + (1 3⁄ )N−1                                                                   (19) 

 

The simple example shown in Figures 3 and 4 is meant to show that the smoothing of the 

curvature plot enables us to see the trend of the plot better. The plot has less spikes and 

their magnitudes are somewhat reduced anyway. 

 

 
Figure 3. This plot shows the distribution of original curvature data for each profile curve. Profiles 1 and 

2 correspond to data 1 and data 2, respectively. 

Point numbers 

C
u
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Figure 4. This shows curvature distribution that was smoothened 25 times in order to better see the trend 

of the distribution. Again, profiles 1 and 2 correspond to data 1 and data 2, respectively. 

 

The application of the smoothing techniques is shown to the same example can be shown 

as a function of how many times the curvature data is smoothened. Figure 5 below shows 

the changes in the generated target profiles as compared to the original ones as the 

curvature distribution changes. The target profiles match the shapes of the design profiles 

almost perfectly as evident in Figure 6. 

 
Figure 5. The curvature distribution after smoothing. 
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Figure 6. The curves plotted after 5 times of smoothing processing. 

 

The user of this system has the ability to choose how much compromise is acceptable 

based on the differences between profiles that are generated from curvature data and the 

original profiles.  A smoother distribution of curvature can definitely assist in selecting 

the regions suitable for prismatic joints. If Figure 6(b) is selected as the curvature plot, 

then in the next process, it will be easier for the user of the system to select the start and 

end points where a prismatic link will be placed. 

 

The regenerated target profiles were made from information of the curvature.  To do this, 

we refer again to the Equation used to find the curvature. However, now the curvature ̃ 

is already known from Equation (17) through Equation (19) while the unknowns are the 

center point (a, b) and the third point (x3, y3). The first part is to solve for the center point 

(a, b) by knowing (x1, y1) and (x2, y2). 

 

(a2 + b2) − 2ax − 2by = (r2 − x2 − y2)                                                 (20) 

 

This Equation (20) can be expanded in matrix form as 

 

[
1 −2x1

1 −2x2
] {

a
a2 + b2} + {

2y1

2y2
} = {

r2 − x1
2

− y1
2

r2 − x2
2 − y2

2
}                                         (21) 

 

Now, having center (a, b) from Equation (21), one can solve for (x3, y3). Having these 

coordinates, the profile could then be redrawn from a fixed frame. Once this is done, the 

method of shifted profiles is applied so that the regenerated profile is shifted back to the 

original target profile. 

 

One of the ways to find (x3, y3) is by using the circle Equation (22) shown below.   

 

2ax + 2by + (r2 − a2 − b2) = (x2 + y2)                                                (22) 

 

Profile 1 

Profile 2 
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This can also be shown in a matrix form as 

 

[

1 2x1 2y1

1 2x2 2y2

1 2x3 2y3

] {
r2 − a2 − b2

a
b

} = {

x1
2 + y1

2

x2
2 + y2

2

x3
2 + y3

2

}                                               (23) 

 

Equation (23) solves for the curvature where curvature is 𝜅 = 1/𝑟 as in Equation (6). 

However, if the distance between points 1 and 2 is not the same as the distance between 

points 2 and 3, then when we use data points 1 and 2 as well as the signed value of the 

curvature of point 2, we can have a choice of 4 possible points for (x3, y3).   

 

Nevertheless, since the construction of the target profiles uses finite numbers of roughly 

equal length segments, then 2 of these possible points coincide with point 1. The other 2 

possibilities will have either positive or negative curvature value.  The algorithm created 

should compare these values to match the input curvature value used. This could be from 

the original data or after the curvature was smoothened.   

 

Figure 7 shows the detection of (x3, y3) when the segment lengths are different and 

another when they are about the same. Normally, the algorithm created would choose the 

correct point 3. Thus, it is a reliable way to find a unique point 3 in the geometry. 

 

 
 

Figure 7. The process of creating the constant curvature segment from (a) through (d). 
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5.0 SELECTION OF CONSTANT CURVATURE LINKS WITH 

PRISMATIC JOINTS 

 

In MATLAB, the selection process involves looking at the plot of curvature and point 

numbers as in Figure 8(a) for example.  The less clutter the data distribution gets, the 

easier it is to see which curvature points could fall under the same band. The band of 

curvature translate to the range that the points will have rather similar average radius, so 

that a single radius prismatic link can connect them. 

 

The selection can be done for one prismatic joint or link at a time. Within the closed 

curvature band, the start point and the stop point of the prismatic link are selected for each 

profile. After this is done, the plot of the profiles will be updated with all curves beginning 

at the stop points in the previous selection. Next, if there are points that fall in another 

band, the same selection process is taken.   

 

Figure 8(b) illustrates this concept. The aim is mainly to get as many links with prismatic 

joint as possible. However, each prismatic set is to be selected from a band of curvatures 

that are common throughout all curves involved. 

 

For each link with prismatic joint, the range of point numbers for each target profile can 

be determined by using the crosshair selection process. From this information the 

curvature values pertaining to those points, a mean curvature can be calculated.  Using 

the relationship in Equation (6), the mean radius of the constant curvature link with 

prismatic joint can be found. The prismatic link, whether it is curved or straight, must 

basically have the same mean radius to operate. 

 

rm = (1 𝐶⁄ ) ∑ ((1 nj⁄ ) ∑ 1 ij⁄
nj

i=1
)C

j=1                                                             (24) 

 

C here is the number of profiles in the synthesis. By knowing this mean radius from 

Equation (24), next is basically forming an arc with the center at (0,0). The polarity of rm 

is important here since it determines the shape of the arc, either concave up or concave 

down. A negative rm will start the arc at (-rm, 0) and move clockwise to create concave 

down shape. On the other hand, a positive rm will start the arc at (rm, 0) and move 

clockwise to create concave up shape.   

 

Each small segment of the arc formed is equal to the size of a mean piecewise linear 

segment Sm that make up the target profiles. Hence, the formation of the arc occurs at 

specific delta angle until the range of point numbers selected for a particular prismatic 

link is covered for that profile. Equation (25) shows how to get the angle. 

 

δ = cos−1[(Sm
2 − 2rm

2 ) (−2rm
2 )⁄ ]                                                                  (25) 

 

The step angle δ does not have polarity. The different length arcs are created one for each 

profile since they have different number of points. Then methods described in section 3 

are used to optimally place these arcs back into position.  Figure 9 shows the concept for 

one prismatic link that works on 2 profiles of different length extensions. 
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Figure 8.  (a) The curvature band identified for the use of prismatic joint and constant curvature segments. 

(b) Curvature band left that is suitable for a mean segment. Profiles 1 and 2 relate to data 1 and data2, 

respectively. 
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Figure 9.  The length-changing link is the same but in two positions. 

 

The next part is filling up the gaps on the profiles that are not specified for prismatic links. 

Each portion of the gaps must have the same number of points.  They each will be filled 

with one or more rigid bodies until the gaps are filled. The number of rigid bodies used 

is determined by an error limit set in the program.  The motive is to have the rigid bodies 

to approximate the shape of the profile section that they want to fill. 

 

One would see that the errors after the links or members are connected via revolute joints 

seem to be higher than they were at segmentation part. The final position of each member 

is not at optimized minimum distance anymore. Instead, starting from link number 2, each 

link has to start where the previous link ended. They are connected there. Next, the end 

of the link points towards the point on each target profile where the link approximates the 

curve. Therefore, the error of this final position can become significantly higher than 

before the links are hooked up. 

 

Real world applications include a hull design that would need to change shape in order to 

obtain the required drag for a craft to move in a fluid. This is depicted by the cross-section 

of the machine in Figure 10 that may change shape and thus achieving different arc length. 

Shamsudin in (Shamsudin, 2013) showcased an example of shape-changing slat for a 

30P30N airfoil wing. Researchers in (Ismail, Shamsudin & Sudin, 2015) and (Shamsudin 

& Ismail, 2018) also touched on this novel design of the wing and slat profiles. The paper 

also suggested some of the benefits especially in terms of lowering noise level. If the 

airfoil is used underwater, ultrasound can be used to measure fluid velocity around the 

profiles as in (Daosaeng & Thong-un, 2019). Figure 11 displays a more recent design for 

the same slat in (Ismail, Shamsudin & Sudin, 2015) where the mechanisms can be 

simplified further. Some analytical methods in (Myszka, 2009) may help in locating the 

fixed pivot points in a four-bar mechanism using three-position synthesis. There are 

various methods – mostly graphical – for this synthesis as explained in enough detail in 

(Dicker Jr., Pennock & Shigley, 2016), (Myszka, 2015) and (Waldron, Kinzel & Agrawal, 

2016).  

The same 

constant 

curvature 

segment 

Profile 1 

Profile 2 
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Figure 10.  The aircraft wing slat changes between stowed, midway position, and fully deployed as it 

changes from (a) to (c). 

 

 

(a) 

(b) 

(c) 
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6.0 CONCLUSION 

 

The algorithm being developed here is very promising in approximating the target profiles 

with links that consist of rigid bodies and prismatic links. The number of rigid bodies that 

fill the gaps that is not covered by prismatic links can be optimized by using the distances 

of the mean segment profiles to the target section profiles. The largest distance becomes 

the error associated with the mean profile. While this error is less than a specified 

maximum error, such as 0.1, the size of the mean segment profile is increased until its 

error is just below the maximum error. Then another mean segment is created following 

the same algorithm until the same-number-of-points section is covered. The overall error 

will increase though, as the bodies are linked up together with revolute joints.  
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