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ABSTRACT

The present study addresses the multi-criteria modeling and optimization 
of Electrical Discharge Machining (EDM) for AISI2312 hot worked steel 
parts via optimized back propagation neural networks (OBPNN) and 
Simulated Annealing (SA) algorithm. The process response characteristics 
considered are surface roughness, tool wear rate and material removal rate. 
The process input parameters include voltage, peak current, pulse off time, 
pulse on time and duty factor. The weighted normalized grades, obtained 
from Taguchi design of experiments, are used to develop the arteficial 
neural network (ANN) model. In order to enhance the prediction capability 
of the proosed model, its architecture is tuned by simulated annealing 
algorithm. Next, the developed model is embaded into the SA algorithm 
to determine the best set of process parameters values for a desired set of 
outputs. Validation of the results has been carried out through a test run 
under the optimal machining conditions. Experimental results indicate 
that the proposed modeling and optimization procedures are quite efficient 
in modeling and optimization of EDM process parameters.
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Optimized back propagation neural network (OBPNN); Simulated 
annealing algorithm 

1.0	 INTRODUCTION 

In recent years various machining processes have been developerd 
or modified to cope with high alloy materials. Among these alloyes, 
hotworked AISI2312 steel is one of the most difficult-to-cut materials. 
The need for producing complex shapes along with reasonable speed 
and surface finish are very difficult to achieve by traditional machining 
processes. Electric Discharge Machining (EDM) is a non-conventional 

* Corresponding author email: masoud_azadi88@yahoo.com



ISSN: 2180-1053        Vol. 6     No. 2    July - December 2014

Journal of Mechanical Engineering and Technology 

86

machining process suitable for shaping this alloy. In EDM process, the 
material erosion mechanism primarily makes use of electrical energy 
and turns it into thermal energy through a series of discrete electrical 
discharges occurring between the electrode and workpiece immersed 
in a dielectric fluid (Figure 1). This unique feature of using thermal 
energy to machine electrically conductive parts has been its distinctive 
advantage in the manufacture of moulds, dies, aerospace and surgical 
components (Pushpendra et al. (2012)).

Figure 1. Schematic illustration of Electrical Discharge Machining 

The thermal energy generates a channel of plasma between the work piece electrode 
(cathode) and the tool electrode (anode) at a temperature in the range of 8000 to 12,000 
°C. initialising a substantial amount of heating and melting of material at the surface of 
each pole. When the pulsating direct current supply occurring at the rate of 
approximately 20,000–30,000 Hz is turned off, the plasma channel breaks down. This
causes a sudden reduction in the temperature allowing the circulating dielectric fluid to 
implore the plasma channel and flush the molten material from the pole surfaces in the 
form of microscopic debris. This process of melting and evaporating material from the 
workpiece surface is in complete contrast to the conventional machining processes, as 
chips are not mechanically produced (Ho & Newman, 2003).

The most infulential process parameters of EDM process are dischrge voltage, peak 
current, pulse duration (pulse on time and pulse off time), duty factor, polarity, type of 
dielectric flushing, spark gap, pulse frequency and corresponding performance measures 
are Material Removal Rate (MRR), Tool Wear Rate (TWR), Surface Roughness (SR),
total machining time and etc, (Figure 2). However, optimizing any of these meaures 
alone have a limited value in real practice, due to the complex nature of the process 
where several different and sometimes contradictory objectives must be simultaneously 
considered (Chowdary & Yuvaraj, 2012). For this, in recent years multi-criteria process 
modeling and optimization has recived more attention by researchers and practitioners 
(Asoka & Kumar, 2008).

Figure 1. Schematic illustration of Electrical Discharge Machining
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heating and melting of material at the surface of each pole. When the 
pulsating direct current supply occurring at the rate of approximately 
20,000–30,000 Hz is turned off, the plasma channel breaks down. This 
causes a sudden reduction in the temperature allowing the circulating 
dielectric fluid to implore the plasma channel and flush the molten 
material from the pole surfaces in the form of microscopic debris. 
This process of melting and evaporating material from the workpiece 
surface is in complete contrast to the conventional machining processes, 
as chips are not mechanically produced (Ho & Newman, 2003).
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complex nature of the process where several different and sometimes 
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contradictory objectives must be simultaneously considered (Chowdary 
& Yuvaraj, 2012). For this, in recent years multi-criteria process 
modeling and optimization has recived more attention by researchers 
and practitioners (Asoka & Kumar, 2008).

Figure 2. Process parameters and performance measures of EDM (Sanghani & Acharya, 2014)

To improve the process performance of EDM, it is essential to understand how 
performance measures depend on input parameters. The success of optimization 
techniques depend on the establishment of proper relationships between input 
parameters and performance measures. But the stochastic and complex nature of the 
process makes it too difficult to establish such relationship. During earlier days, based 
on the actual mechanism physical models of EDM process were developed. But, the 
physical models could not establish the relationships between input parameters and 
performance measures accurately as the process involves thermal, electrical and 
metallurgical variables. Further, inevitable assumptions made while physical modeling 
of the process, induce large deviations from actual process. Thus, inability of physical 
models has led the researchers to develop empirical or data based model of EDM 
process. Many empirical, statistical and regression techniques have been used for 
modeling EDM process (Zorepour, et al. (2004)). Fitting curves to non-linear data 
becomes difficult when number of inputs is high. Therefore statistical techniques find 
limited application in modeling EDM process. Regression techniques also do not 
provide satisfactory results because of the presence of noise in the system variables of 
the EDM process. 

In recent years, Arteficial Neural Networks (ANNs) have demonstrated great potential 
in modeling of the input–output relationships of complicated systems.There are many 
types of artificial neural networks which differ in architecture, implementation of 
transfer functions and strategy of learning. In view of their universal approximation 
property, Back Propagation Neural Network (BPNN) has received considerable 
attention. The feature subsets, the number of hidden layers, and the number of 
processing elements in hidden layers are the architectural factors of BPNN to be 
determined in advance for the modeling process (Jung & Kwon, 2008).

For ANN, the heuristic algorithms are popularly applied to select best architecture 
including the optimal number of processing elements (Assarzadeh & Ghoreishi, 2008).

Figure 2. Process parameters and performance measures of EDM 
(Sanghani & Acharya, 2014)

To improve the process performance of EDM, it is essential to 
understand how performance measures depend on input parameters. 
The success of optimization techniques depend on the establishment 
of proper relationships between input parameters and performance 
measures. But the stochastic and complex nature of the process makes 
it too difficult to establish such relationship. During earlier days, 
based on the actual mechanism physical models of EDM process were 
developed. But, the physical models could not establish the relationships 
between input parameters and performance measures accurately as 
the process involves thermal, electrical and metallurgical variables. 
Further, inevitable assumptions made while physical modeling of the 
process, induce large deviations from actual process. Thus, inability of 
physical models has led the researchers to develop empirical or data 
based model of EDM process. Many empirical, statistical and regression 
techniques have been used for modeling EDM process (Zorepour, et 
al. (2004)). Fitting curves to non-linear data becomes difficult when 
number of inputs is high. Therefore statistical techniques find limited 
application in modeling EDM process. Regression techniques also do 
not provide satisfactory results because of the presence of noise in the 
system variables of the EDM process. 
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In recent years, Arteficial Neural Networks (ANNs) have demonstrated 
great potential in modeling of the input–output relationships of 
complicated systems.There are many types of artificial neural networks 
which differ in architecture, implementation of transfer functions and 
strategy of learning. In view of their universal approximation property, 
Back Propagation Neural Network (BPNN) has received considerable 
attention. The feature subsets, the number of hidden layers, and the 
number of processing elements in hidden layers are the architectural 
factors of BPNN to be determined in advance for the modeling process 
(Jung & Kwon, 2008). 

For ANN, the heuristic algorithms are popularly applied to select best 
architecture including the optimal number of processing elements 
(Assarzadeh & Ghoreishi, 2008). 

Several researchers have shown the applicability and superiority of 
ANN in modeling and optimization of machining processes. 

Pushpendra et al. (2012) used controlled elitist non-dominated sorting 
genetic algorithm to optimize the EDM process for Inconel 718. ANN 
with back propagation algorithm has been used to model EDM process. 
ANN has been trained with the experimental data set. Controlled 
elitist non-dominated sorting genetic algorithm has been employed 
in the trained network and a set of pareto-optimal solutions was 
obtained. Next, the prediction ability of the trained network has been 
verified experimentally. The average percentage difference between 
experimental and ANN’s predicted value was 4 and 4.67 for MRR and 
SR respectively.

Mohana and Hanumantha (2010) used BPNN models to determine the 
settings of pulse on time, pulse off time, peak current and resistanse for 
the estimation of MRR and SR. Based on their results, peak current has 
the most influence on the two machining responses. 

Mahdavinejad et al. (2011) used ANN with back propagation algorithm 
to model the EDM process for machining of Silicon Carbide (SiC). An 
ANN model has been trained within the experimental data. Various 
ANN architectures have been studied, and 3-5-5-2 is selected. Material 
removal rate and surface roughness have been optimized as objectives 
by using a multi-objective optimization method. Testing results 
demonestrated that the model is suitable for predicting the response 
parameters. 
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Bhavesh et al. (2013) proposed an artificial neural network for the 
prediction of MRR, SR and TWR in EDM of AISI H13 Steel. The neural 
network based on process model has been generated to establish 
relationship between input process conditions (gap voltage, peak 
current, pulse on time, pulse off time and electrode material) and process 
responses (MRR, SR and TWR). The ANN model has been trained and 
tested using the data generated from a series of experiments on EDM. 
The trained neural network system has been used to predict MRR, SR 
and TWR for different input conditions. The ANN model has been 
found efficient to predict EDM process responses for selected process 
conditions.

Previous studies proved the efficiency of ANN techniques and heuristic 
algorithms to model and optimize process parameters setting of EDM.  
In most of the cases the  number of neurons in the hidden layers for 
the training algorithm is being selected through tial and error. But 
in this study the problem was tackled using simulated annealing 
(SA) algorithm.  This study proposes a hybrid approach composed 
of ANN and SA algorithm to undertake the multi-criteria modeling 
and optimization for EDM of AISI2312 hot worked steel parts. To the 
best of our knowledge, there is no published work to study the EDM 
process of AISI2312 steel through the proposed method.  First, the 
experimental data are gathered based on L36 Taguchi design matrix. 
Then, the process is modeled using an optimized ANN. To enhance the 
prediction accuracy of the proposed model, the architecture (number 
of hidden layer and neurons in each layer) of the network has been 
optimized using a SA algorithm. Finally, the optimized BPNN model 
has been embedded into a SA optimization procedure, to determine 
the best set of process parameter values. 

2.0	 EXPERIMENTAL DETAILS

2.1. 	 Material properties

Hot worked alloys are among the hardest materials to shape because 
of their strength and chemical reactivity with tool materials. AISI2312 
hot worked steel is a popular alloy used for plastic moulds, mould 
frames, pressure casting moulds and recipient sleeves. Because of its 
controlled sulphur content this material has poor toughness. Despite 
its unique properties, the usage of this alloy is limited due to the 
high processing costs. In this study AISI2312 hot worked steel parts 
have been applied since only a few researchers have done the studies 
regarding this material using EDM process. The chemical composition 
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and mechanical properties of this alloy is provided in Table 1 and 2 
respectively.

  Table 1. Chemical composition of AISI2312
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2.1. Material properties

Hot worked alloys are among the hardest materials to shape because of their strength 
and chemical reactivity with tool materials. AISI2312 hot worked steel is a popular 
alloy used for plastic moulds, mould frames, pressure casting moulds and recipient 
sleeves. Because of its controlled sulphur content this material has poor toughness.
Despite its unique properties, the usage of this alloy is limited due to the high 
processing costs. In this study AISI2312 hot worked steel parts have been applied since 
only a few researchers have done the studies regarding this material using EDM 
process. The chemical composition and mechanical properties of this alloy is provided 
in Table 1 and 2 respectively.

Table 1. Chemical composition of AISI2312
Composition

C Si Mn P S Cr Mo
0.38 0.30 1.50 0.02 0.07 2.00 0.20

Table.2 Mechanical properties of AISI2312
Property Unit Value
Hardness HRC 55-60 HRC

Average Coefficient of Thermal Expansion μm/m · K 11.6
Young’s modulus GPa 212

Thermal Conductivity W/m · K 34.0

The EDM operation is performed on workpeices having 10mm thickness and 40×20
mm2 dimension. The machining time for each test was 45 minutes. Furthermore, the 
experiments have been done in random order to increase accuracy.

2.2. Machine tool

In the present study, an Azerakhsh-304H die-sinking machine has been used to perform 
the experiments. Die-sinking machine used is shown in figure 3. Table.3 illustrates the 
mechanical specification of the machine tool used.

Figure 3.  The Azerakhsh-304H EDM machine used for experiments
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 Table. 3 The detailed technical specifications of the machine tool usedTable. 3 The detailed technical specifications of the machine tool used
SPECIFICATION Size
Work Table Size 500×300 mm
Cross Travel Y 250 mm
Spindle Travel & Head Stock Travel 180+200 mm
Maximum Electrode weight 50 kg
Loading Capacity of Table 500 kg

2.3. Electrode material

The materials which are been used as tool electrode in EDM are brass, copper, tungsten 
and graphite. Brass is seldom used as electrode material in modern EDM because of its 
high wear rate. Use of tungsten as tool electrode is also limited to certain applications 
only. However, tungsten possess some qualities such as high density, high tensile 
strength and high melting point, its cutting speed is much slower than that of brass and 
copper due to its relatively poor electrical conductivity. In addition, high cost and low 
machinability are also disadvantages of tungsten to be used as EDM tool electrode. 
Copper and graphite are most commonly used electrode material in EDM. The wear rate 
of graphite is much less than that of copper due to its extremely high melting point. 
Copper can produce very fine surface due to its structure integrity. More so, the 
structure integrity makes copper electrode highly resistant to DC arcing in case of poor 
flushing conditions. It is difficult to machine graphite electrode being it polycrystalline 
and brittle. On the contrary, the machinability of copper is better than that of graphite. 

Therefore based on the basis of these facts and literature survey, copper has been used 
as electrode material in this work. Table 4 shows the electrode used properties.

Table.4 Properties of the electrode used
Electrode Material Density

(g/cm3)
Thermal Conductivity 
(W/mK)

Electrode Resistivity 
(µ-ohms)

Hardness
(BHN)

Copper 8.9 399 1.69 48

3.0 DESIGN OF EXPERIMENTS

Experimentation is an integral part of any engineering investigation. The word ‘design’ 
in the expression Design of Experiments (DOE), is used in a general sense to convey 
planning of experiments to fulfill intended objectives. To design the experiment is to 
develop a scheme or layout of the different conditions to be studied. In practice, 
‘design’ refers to some form of engineering communication, such as a set of 
specifications, drawings or physical models that describe the concept. Since an 
experiment design should satisfy primarily the conditions for each experimental run. 
Therefore, before designing an experiment, knowledge of the product / process under 
investigation is of the prime importance for identifying the factors that influence the 
outcome. The general scenario in an experiment is that there is an output variable 
(generally quantitative in nature), which depends on several input variables, called 
factors. Each factor has at least two settings, called levels. A combination of the levels 
of all the factors involved in the experiment is called a treatment combination. DOE is a 
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2.3. 	 Electrode material
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strength and high melting point, its cutting speed is much slower than 
that of brass and copper due to its relatively poor electrical conductivity. 
In addition, high cost and low machinability are also disadvantages 
of tungsten to be used as EDM tool electrode. Copper and graphite 
are most commonly used electrode material in EDM. The wear rate 
of graphite is much less than that of copper due to its extremely high 
melting point. Copper can produce very fine surface due to its structure 
integrity. More so, the structure integrity makes copper electrode highly 
resistant to DC arcing in case of poor flushing conditions. It is difficult 
to machine graphite electrode being it polycrystalline and brittle. On 
the contrary, the machinability of copper is better than that of graphite. 
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electrode used properties.
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experiment is called a treatment combination. DOE is a statistical 
technique used to study the effects of multiple variables on performance 
measures simultaneously. It provides an efficient experimental 
schedule and statistical analysis of the experimental results (Roy et al., 
1990). DOE strategy involves, a) Selection of process parameters and 
their levels. b) Selection of performance measures. c) Selection of the 
matrix of experiments.

3.1. 	 Taguchi technique

Taguchi technique constructed a special set of general designs for 
factorial experiments that overcomes the drawbacks of partial factorial 
experiment. The method is popularly known as Taguchi’s method. 
The special set of designs consists of Orthogonal Arrays (OA). The OA 
is a method of setting up experiments that only requires a fraction of 
full factorial combinations. The treatment combinations are chosen to 
provide sufficient information to determine the factor effects using 
the analysis of means. Orthogonal refers to the balance of the various 
combinations of factors so that no one factor is given more or less 
weight in the experiment than the other factors. Orthogonal also refers 
to the fact that effect of each factor can be mathematically assessed 
independent of the effect of the other factors. Taguchi’s method, 
firstly, clearly defines orthogonal arrays, each of which can be used for 
many experimental situations. Secondly, Taguchi’s method provides 
a standard method for analysis of results. Taguchi’s method provides 
consistency and reproducibility that is generally not found in other 
statistical methods. (Roy et al., 1990).

Taguchi’s method has been used as a DOE technique for the present 
work. Taguchi’s method provides the special set of design that requires 
a fraction of full factorial combinations. This study has been undertaken 
to investigate the effects of peak current (I), voltage (V), pulse off time 
(Toff), pulse on time (Ton), and duty factor (η) on material removal rate 
(MRR) tool wear rate (TWR) and surface roughness (SR). Therefore, 
L36 (21×34) has been used to carry out experiments. Five process (input) 
parameters have been selected on the basis of literature survey and 
preliminary investigations. Out of five, one factor has 2 levels and 
the rest of the factors have 3 levels each (Roy et al., 1990). Preliminary 
experiments were conducted for the wide range of pulse-on-time, 
discharge current and gap voltage. Satisfactory results were obtained 
for 2.5-7.5A, range of peak current. Below 2.5 A, MRR was very low 
and beyond 7.5 A, MRR was good but SR was vey poor. Similar 
observations were made for specified range of pulse on and off time 
and gap voltage. The range of the other parameters was fixed based on 
the ranges as specified in machine manufacturer’s manual. 
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Table 5 lists the machining parameters and their levels. The limitations 
of test equipment may also dictate a certain number of levels for some 
of the process parameters. In our case, the die-sinking EDM machine 
used for experiments had only two settings for pulse off time - Toff (10 
and 75 μs).
	

Table 5. Machining Parameters and Levels
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parameters. In our case, the die-sinking EDM machine used for experiments had only 
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Table 5. Machining Parameters and Levels
Parameters Range Level 1 Level 2 Level 3

Peak current (A) 2.5-7.5 2.5 5 7
Voltage (V) 50-60 50 55 60

Pulse on time (µs) 25-200 25 100 200
Pulse off time (µs) 10-75 10 75 -

Duty factor (S) 0.4-1.6 0.4 1 1.6
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In the above equations, n is the number of trials (in our case 36), yi is the value of the 
observed response in the ith trial and Zi is the corresponding normalized value for yi.
Now the multiple output responses can be transformed into a single WNG through the 
following equation:
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where p is the number of performance measures, kβ is the normalized relative weight of 
the kth response. In this study, p is 3 which correspond to MRR, SR and TWR. The 
weighting coefficient, kβ , is assumed to be the same ( kβ = 0.333) for all three process 
outputs. This single measure may now be used for model development. The 36 
experimental settings and their corresponding measured outputs are recorded in Table 3. 
The last column of Table 3 shows the calculated WNG for each test.
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and their corresponding measured outputs are recorded in Table 3. The 
last column of Table 3 shows the calculated WNG for each test.

Table 3. The L36 experimental design and results
Table 3. The L36 experimental design and results

No Toff(µs) Ton(µs) I(A) η(sec) V(V) SR (µm) MRR(gr/min) TWR (%) WNG
1 1 1 1 1 1 3.6 0.35 0.04 0.64
2 1 2 2 2 2 7.2 3.04 0.08 0.60
3 1 3 3 3 3 3.2 0.33 0.03 0.66
4 1 1 1 1 1 7.2 2.08 0.07 0.57
5 1 2 2 2 2 13.0 6.84 0.03 0.55
6 1 3 3 3 3 3.8 0.45 0.03 0.64
7 1 1 1 2 3 8.8 5.52 0.15 0.60
8 1 2 2 3 1 13.0 2.83 0.02 0.42
9 1 3 3 1 2 4.6 0.56 0.03 0.62

10 1 1 1 3 2 7.6 1.56 0.06 0.54
11 1 2 2 1 3 13.4 10.64 0.07 0.64
12 1 3 3 2 1 5.0 1.70 0.61 0.43
13 1 1 2 3 1 8.4 2.53 0.19 0.50
14 1 2 3 1 2 6.4 0.88 0.01 0.58
15 1 3 1 2 3 4.8 1.28 0.46 0.48
16 1 1 2 3 2 10.2 2.24 0.15 0.45
17 1 2 3 1 3 6.0 1.14 0.01 0.60
18 1 3 1 2 1 4.4 0.57 0.20 0.56
19 2 1 2 1 3 7.0 2.99 0.33 0.51
20 2 2 3 2 1 6.4 0.85 0.01 0.58
21 2 3 1 3 2 4.6 1.20 0.47 0.48
22 2 1 2 2 3 8.4 4.43 0.35 0.50
23 2 2 3 3 1 5.8 0.37 0.01 0.58
24 2 3 1 1 2 5.8 2.00 0.93 0.30
25 2 1 3 2 1 5.8 0.77 0.01 0.59
26 2 2 1 3 2 11.2 1.74 0.01 0.45
27 2 3 2 1 3 4.6 1.84 0.82 0.38
28 2 1 3 2 2 4.4 0.67 0.01 0.63
29 2 2 1 3 3 11.6 1.91 0.01 0.44
30 2 3 2 1 1 5.2 1.57 0.66 0.40
31 2 1 3 3 3 6.6 0.44 0.01 0.56
32 2 2 1 1 1 8.8 4.26 0.03 0.60
33 2 3 2 2 2 5.0 0.85 0.40 0.48
34 2 1 3 1 2 5.4 0.64 0.01 0.60
35 2 2 1 2 3 9.2 5.13 0.01 0.62
36 2 3 2 3 1 3.2 0.91 0.01 0.68

6.0 MODEL DEVELOPMENT - THE OPTIMIZED BACK PROPAGATION 
NEURAL NETWORK 

6.1 Simulated Annealing (SA) Algorithm

Simulated annealing (SA) algorithm is an optimization process whose operation is 
strongly reminiscent of the physical annealing of crystalline compounds such as metals 
and metallic alloys (Kirkpatric et al., 1983). In condensed matter physics, annealing is a 
physical process that is used to reconstruct the crystal structure of a solid with a low 
energy state. A solid in a state bath is first heated up to a temperature above the melting 
point of the solid. At this temperature, all particles of the solid are in violent random 
motion. The temperature of the heat bath is then slowly cooled down. All particles of 
the solid rearrange themselves and tend toward a low energy state. As the cooling of the 
particle is carried out sufficiently slowly, lower and lower energy states are obtained 
until the lowest energy state is reached. Similarly, in EDM an energy function is created 
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bath is then slowly cooled down. All particles of the solid rearrange 
themselves and tend toward a low energy state. As the cooling of the 
particle is carried out sufficiently slowly, lower and lower energy states 
are obtained until the lowest energy state is reached. Similarly, in EDM 
an energy function is created which is minimized. While minimizing 
efforts are made to avoid local minima and to achieve global minima. 
The lowest energy level gives the optimized value of EDM parameters. 
In recent years, the simulated annealing algorithm has emerged as a 
leading tool for large-scale combinational optimization problems. 

A standard SA procedure begins by generating an initial solution at 
random. At initial stages, a small random change is made in the current 
solution. Then the objective function value of new solution is calculated 
and compared with that of current solution. A move is made to the new 
solution if it has better value or if the probability function implemented 
in SA has a higher value than a randomly generated number. The 
probability of accepting a new solution is given as follows:
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The calculation of this probability relies on a temperature parameter, T, which is 
referred to as temperature, since it plays a similar role as the temperature in the physical 
annealing process. To avoid getting trapped at a local minimum point, the rate of 
reduction should be slow (Yang & Srinivas, 2009). In our problem the following 
method to reduce the temperature has been used:

19.0...,1,01 <≤==+ candicTT ii (8)

Thus, at the start of SA most worsening moves may be accepted, but at the end only 
improving ones are likely to be allowed. This can help the procedure jump out of a local 
minimum. The algorithm may be terminated after a certain volume fraction for the 
structure has been reached or after a pre-specified run time.

Simulated annealing algorithm has diverse applications including improving the 
performance of other artificial intelligence techniques and determining the optimal set 
of process parameters (Yang & Srinivas, 2009 and Markopoulos, 2008). In this
research, SA has been used twice. First it is employed to determine the best architecture 
(number of layers and number of neurons in each layer) of the ANN to model the EDM 
process. Once the best architecture of the ANN is determined, the proposed model is 
implanted into a SA procedure to find the optimal set of EDM process parameters. 
 
6.2 The optimized Back Propagation Neural Network (BPNN)

The first model of the artificial neural network (ANN) was given by McCulloch and 
Pitts in 1943. ANNs are simplified models of biological nervous system inspired by the 
computing performed by a human brain. Kohonen defined neural network as “massively 
parallel interconnected networks of simple usually adaptive elements and their 
hierarchical organizations which are intended to interact with the objects of the real 
world in the same way as biological nervous system do.” ANNs have the capability to 
learn and thereby acquire knowledge and make it available for use (McCulloch & Pitts, 
1943).
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Thus, at the start of SA most worsening moves may be accepted, but 
at the end only improving ones are likely to be allowed. This can help 
the procedure jump out of a local minimum. The algorithm may be 
terminated after a certain volume fraction for the structure has been 
reached or after a pre-specified run time.

Simulated annealing algorithm has diverse applications including 
improving the performance of other artificial intelligence techniques 
and determining the optimal set of process parameters (Yang & Srinivas, 
2009 and Markopoulos, 2008). In this research, SA has been used twice. 
First it is employed to determine the best architecture (number of 
layers and number of neurons in each layer) of the ANN to model the 
EDM process. Once the best architecture of the ANN is determined, the 
proposed model is implanted into a SA procedure to find the optimal 
set of EDM process parameters. 



ISSN: 2180-1053        Vol. 6     No. 2    July - December 2014

Modeling and Optimization of Process Parameters Using Neural Networks and Simulated Annealing 
Algorithm for Electrical Discharge Machining of Aisi2312 Hot Worked Steel

97

6.2	 The optimized Back Propagation Neural Network (BPNN)

The first model of the artificial neural network (ANN) was given 
by McCulloch and Pitts in 1943. ANNs are simplified models of 
biological nervous system inspired by the computing performed by a 
human brain. Kohonen defined neural network as “massively parallel 
interconnected networks of simple usually adaptive elements and 
their hierarchical organizations which are intended to interact with the 
objects of the real world in the same way as biological nervous system 
do.” ANNs have the capability to learn and thereby acquire knowledge 
and make it available for use (McCulloch & Pitts, 1943).

ANNs are built by connecting processing units, called nodes or 
neurons. Each of the input (Xi) is associated with some weight (Wi) 
which takes a portion of the input to the node for processing. The node 
combines the inputs (XiWi) and produces net input which in turn is 
transformed into output with the help of transfer function/activation 
function (McCulloch & Pitts, 1943).

Traditional modeling methods are mostly relied on assumptions for 
model simplifications, and consequently may lead to inaccurate results. 
Recently, ANN has become a powerful and practical method to model 
complex non-linear systems. The basis of NN modeling is to capture the 
underlying trend of the data set presented to it, in the form of a complex 
nonlinear relationship between the input parameters and the output 
variable (Debabrata et al., 2007). Learning, generalization, and parallel 
processing are important advantages of ANN. These characteristics of 
the ANNs make them suitable for EDM process modeling. 

Many researchers have proposed that multilayered networks are 
capable of computing a wide range of Boolean functions than networks 
with a single layer of computing units (Huang & Huang 1991). 
However, the computational effort needed for modeling a system 
increases substantially when more parameters and more complicated 
architecters are considered. The Back Propagation Neural Networks 
(BPNN) is found most suitable for handling such large learning 
problems. This type of neural network is known as a supervised 
network because it requires a desired output in order to learn. A BPNN 
consists of multiple layers of nodes in a directed scheme, with each 
layer fully connected to the next one. Except for the input nodes, each 
node is a neuron (or processing element) with a nonlinear activation 
function (Sexton & Allidae, 1998).
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The architecture of a neural network specifies the number of layers, 
the number of neurones, each layer contains and how the neurons are 
interconnected. The design of an BPNN architecture is “more of an 
art than a science”, in the sense that optimal design is based more on 
metha heuristic or experience rather than on proven methods (Sexton 
& Allidae, 1998). Metha heuristic methods such as SA algorithm 
can be used to construct proper architecture design for NN model 
development. Also in that generates a single output value from all of 
the input values that are applied to the neuron. Every connection has a 
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One of the most important tasks in ANN modeling is to choose the 
best network architecture, namely the number of hidden layers and 
the number of neurons in each layer. Since the number of possible 
combinations may be very large, the trial-and-error approach is 
inefficient. In this study, to specify the best ANN architecture SA is 
employed. Usually the performance of the network will be checked by 
Mean Square Error (MSE) between desired outputs (Yk) and predicted 
outputs (yk) which is expressed as:
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Learning MSE and the generalization MSE, detect the two main characteristics of 
“learning” and “generalization” of ANN. The effectiveness of developed net 
dependence on this features (Krishna & Hanumantha, 2009).

8.3    Proper structure derivation of the model

The appropriate neural network architecture for model development was tuned via SA. 
Number of hidden layers was varied from 1 to 4; hence a 5–n1–n2–n3–n4–1 structure was 
constructed; where n1, n2, n3 and n4 are the number of nods in the 1st to the 4th hidden 
layers. The training of a neural network implies finding desired net's architecture and 
weights that minimize error between the desired output and the predicted outputs. The 
first step in training is the forward phase which occurs when an input vector X is 
presented and propagated through the network to compute an output (Krishna &
Hanumantha, 2009). Hence, an error between the desired output (Yk) and predicted 
output (yk) of the neural network is computed. So the modeling authority of the net 
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where α and β are coefficients which determine the relative importance of learning and 
generalization capability of respect NN. Also p0 and q0 are number of training and 
testing data respectively. The recent relation corresponds to fitness function for 
developing the optimized BPNN construction. In backward phase of BP training, to 
minimize the error between the desired and actual outputs, the gradient descent method 
with a momentum coefficient, is used (Markopoulos & Manolakos, 2008). The weights 
are updated using the following rule:
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is momentum. 

In first step initial parameters and an initial net structure is been configured. Based on 
the fittness function M(net) the approximation aptitude of developed model is been 

Learning MSE and the generalization MSE, detect the two main 
characteristics of “learning” and “generalization” of ANN. The 
effectiveness of developed net dependence on this features (Krishna & 
Hanumantha, 2009).
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8.3    Proper structure derivation of the model
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where Γ is learning rate and ∆wi,jn  is change of neuron’s weight at 
previous step and ω is momentum. 

In first step initial parameters and an initial net structure is been 
configured. Based on the fittness function M(net) the approximation 
aptitude of developed model is been evaluated. At each iteration a new 
architecture based on the current structure is generated and evaluated. 
This new model’s structure is then accepted if the objective functions 
(M(net)) is lower than the current one or if the value of the probability 
function implemented in SA has a higher value than a randomly 
generated number between zero and one. otherwise the algorithm 
data have been updated and a new structure based on the current 
structure have been derivated. This iterative steps is continued until 
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the algorithm has been converged after the predetermined number of 
iterations.

7.0	 RESULTS AND DISCUSSION

7.1		 OBPNN prediction results

Figure 4 shows convergence of SA for objective function (M(net)). 
The architecture  of the OBPNN is shown in Figure 5. The optimum 
number of hidden layers is 2 with 7 and 3 hidden layer nodes in first 
and second layer respectively (architecture of OBPNN is: 5–7–4–1). 
The linear regression analysis is conducted to compute the correlation 
correlation (R2adj) between actual experimental and predicted WNGs. 
The correlation coefficients at the train and testing stage is 0.998 and 
0.987 respectively. The related fitness function for trained model is 
1.53 (M(OBPNN)= 1.53), mean square error between actual and trained 
data is 0.14 while maximum and minimum of absolute errors are 0.01% 
and 1.33% respectively. It is clear that the proposed model predictions 
follow the experimental results very closely therefore can accurately 
predict the actual WNGs.
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It can be deducted that developed model is adequate and based on 
it, optimum set of machining can be found. In Figure 5 results of 
comparison between experimental and verification of OBPNN for 
WNGs is seen. Predicted WNGs by OBPNN pursuit the experimental 
results closely.

7.2	  EDM process input parameters optimization

After successfully process modeling, another algorithm based on SA 
has been developed and optimal value of machining outputs have been 
determined. The developed single model of OBPNN was considered as 
objective function of this algorithm; where maximum WNG is desirable. 
In complementary section, in order to evaluate the accuracy of the 
predicted values, another actual experiment was carried out based 
on the optimized process parameters and the obtained experimental 
responses was compared with the initial parameters design. The 
results which are presented in Table 4, show that the hybrid model 
can improve machining performances. As observed in Table 4, optimal 
machining set is: Toff = 15µs, Ton= 25 µs, I=3 A, η= 0.8 sec V= 65v. For 
optimal machining set rather than initial machining design, material 
removal rate increases form 0.35 g/min to 3.43 g/min; tool wear rate 
is reduced from 0.04 to 0.02 mm; and surface roughness value was 
reduced from 3.6 μm to 3.16 μm. It is evident that quality characteristics 
can be greatly improved through proposed method.

Table 4. Optimal EDM parameters and related responses
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WNGSR 
(μm)

TWR 
(%)

MRR 
(g/min)Process parameterSet

0.643.600.040.35Toff (µs) = 10,Ton (µs) = 25
I (A) =2.5, η (sec) = 0.40, V (v) = 50

Initial process 
design

0.733.160.023.43Toff (µs) = 15 , Ton (µs) = 25
I (A) = 3 , η (sec) = 0.80, V (v) = 65

Optimal process 
design

7.0 CONCLUSION

Hybrid modeling and optimization of process parameters and responses in EDM process 
of AISI2312 hot worked steel have been implemented. Experimental data for process 
modeling obtained from conducted experiments by Taguchi methodology, a systematic 
tool for design of experiments. Multiple process output measure transformed to the 
single measure namely weighted normalized grade (WNG). The optimized back 
propagation neural network (OBPNN) was developed to establish accurate model of 
process multiple performance characteristics. The optimal net’s architecture (number of 
neurons and hidden layers) of OBPNN has been specified using simulated annealing 

7.0	 CONCLUSION

Hybrid modeling and optimization of process parameters and 
responses in EDM process of AISI2312 hot worked steel have been 
implemented. Experimental data for process modeling obtained from 
conducted experiments by Taguchi methodology, a systematic tool for 
design of experiments. Multiple process output measure transformed 
to the single measure namely weighted normalized grade (WNG). 
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The optimized back propagation neural network (OBPNN) was 
developed to establish accurate model of process multiple performance 
characteristics. The optimal net’s architecture  (number of neurons and 
hidden layers) of OBPNN has been specified using simulated annealing 
algorithm. Correlation coefficient (R2adj) and mean square error (MSE) 
between the experimental and predicted values have been calculated. 
Results demonstrates that proposed model of OBPNN models the 
EDM process efficiently; so the proper machining input parameters 
determined via SA based on the developed model. 

The validation of proposed method was evaluated based on a 
confirmation test; which the actual experiment outputs for optimal 
design compared to initial machining set. Using this approach, 
substantial improvements of the prediction capability of the ANNs 
could be realized comparatively with the other commonly used 
modeling methods. From the present analysis it is evident that the 
proposed hybrid model will be very beneficial in multi-objective 
process modeling and quality performance optimization.
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