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ABSTRACT

Usually in studying the conventional fluid-solid interaction problems, 
both the flow field and the solid structure must be jointly meshed and 
solved. This takes a huge amount of iteration and time for calculation 
even for simple specific examples. One of the most industrial elements 
used in fuselage of aero-space systems is the plate whose instability and 
behavior, especially in the case of large deformation, is so vital due to its 
effect on the overall performance of the system.  In this paper, utilizing 
a new method that combines the CFD and Monte Carlo simulation, the 
nonlinear behavior of a two dimensional simply supported non aging 
viscoelastic plate located in a subsonic flow is investigated. First, relative to 
the plate boundary conditions, the whole behavior of the plate is estimated. 
Then, using CFD simulation, the flow field is solved for some various plate 
deformations. This prepared a bank of data for the domain of plate response. 
Due to the dynamic behavior of a turbulent flow which presents highly 
nonlinear terms and disturbances; the aerodynamic forces are modeled 
by some random forcing functions using statistical procedure. Finally, 
using Monte Carlo simulation used for randomly excited ODEs, the forces 
evaluated from CFD for each deformation are applied to the nonlinear 
equation of motion of the plate and the behavior and possible instabilities 
are investigated.
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1.0 introDuCtion

The dynamic behavior and instability phenomenon such as divergence 
and flutter are the most important design considerations for a fluid-
solid interaction system. Plates as one of the best applicable industrial 
elements have been vastly used in these structures whose responses 
must be carefully checked. In the case of nonlinear bi-directional or 
two ways FSI, the problem divided to two major parts: simulation 
and solving the fluid flow field and then the nonlinear behavior and 
instability recognition of the plate as the structure. Many simulations 
can be found in literature used famous FSI methods such as loosely 
(one way) and strongly (two ways) coupled FSI methods and solved 
these two parts jointly. See for example (Du, 2010), (Deiterding et al., 
2008), (Deiterding, 2010), (Paidoussis, 1998), (Shishaeva et al., 2012), 
(Urikovi et al., 2005), (Wong, 2011). 

Since in these FSI simulations, both the flow field and the structure 
must be meshed and solved, we face with a huge amount of iteration 
and calculation time ever for specific case  
studies whose flow field and structure properties such as material 
and geometry were fully determined. In this research we investigated 
the nonlinear behavior of a two dimensional simply supported plate 
located in a subsonic flow by dividing the whole FSI problem to two 
simpler and applicable sub-problems.

First, relative to the external supports, the normal modes of the plate 
are obtained. The whole behavior of the plate can be estimated from 
these normal modes as some admissible functions (Rao, 2004). Second, 
using CFD simulation, the flow field is solved for some various 
structure deformations obtained previously from the normal mode 
functions of the plate. This prepared a bank of data for the domain of 
plate response. Third, regard to the dynamic behavior of a turbulent 
flow which presents highly nonlinear terms and disturbances; the 
aerodynamic forces are modeled by some random forcing functions 
using statistical procedure.

Finally, relative to the works have been done in studying the behavior of 
plates under random forcing functions such as Monte Carlo simulation 
and using an interpolation code, the forces evaluated from CFD for 
each deformation are applied to the nonlinear equation of motion of 
the plate and the behavior and possible instabilities are investigated. 

Historically, the basic studies on Conservative elastic systems under 
random forces can be found in literature at the 1950 and 1960 decades 
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(Potapov, 1999). This reference also said that the behavior of the 
viscoelastic material, especially against accidental loads due to their 
molecular structure becomes random and nonlinear with respect to 
time. For recent studies, see (Sun, 2001) and (Eshmatov, 2007).

Simulation of plates under random forces has been done in literature 
using different methods. They are based on to use FPK equation to 
obtain exact solutions for both linear and nonlinear systems (Bolotin, 
1984; Cai et al., 1996; Potapov, 1999), statistical linearization to obtain 
some local behavior of nonlinear systems (Roberts et al., 1990), the 
dynamics of statistical moments to obtain semi-exact solutions for 
both linear and nonlinear systems (Bolotin, 1984 and Roberts, 1990) 
and Monte Carlo simulation as one of the numerical solutions for such 
systems (Potapov, 1999; Bolotin, 1984; Asnafi, 2001). The behavior 
investigation of plates and panels due to aerodynamic forces can also 
be found in literature using different methods. One of the earlier works, 
for example, is one done by Dowell (1970) that analyzed the problem 
of linear elastic plate under the aerodynamic forces. One of the most 
popular methods in earlier studies was to use piston theory to model 
the aerodynamic forces acting on a plate. Recently and due to the 
development of numerical simulation softwares, solving the fluid solid 
interacting problems has increased significantly. See for example (Du, 
2010), (Deiterding et al., 2008) also (Franco et al., 2008), (Bartoli, 2006), 
(Eloy et al., 2007), (Giordano et al., 2005), (Kambouchev et al., 2007), 
(Song et al., 2011), (Wulf et al., 2013). These FSI simulations, especially 
for nonlinear systems take a huge amount of time for calculation. 

In this article, we combine two previous methods to investigate the 
behavior of nonlinear plates. In other words, the fluctuating forces 
obtained by CFD are first modeled by random variables and then fed 
to a code written to solve nonlinear plates under the equations of fluid 
flow. To obtain the dynamic behavior of the plate, first, we must solve 
the equations of fluid flow in several deflections of plate to obtain an 
aerodynamic force bank and its corresponding random model. The 
latter will be sent to the Monte Carlo simulation written to investigate 
the nonlinear behavior of plates under random forcing functions.
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2.0 mathematiCal eQuationS for 
viSCoelaStiC Plate anD fluiD flow

2.1 governing equation of the viscoelastic plate in large 
deformation

The governing equation of motion for a viscoelastic plate in large 
deformation is taken from (Asnafi, 2001) which is known as the Von 
Karman equations (see also Figure 1).
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Figure 1. (a) The schematic geometry of plate and acting forces and (b) The front view of the plate and
fluid flow

∇4𝛷𝛷 = 𝐸𝐸(𝐼𝐼 − 𝑅𝑅)(𝑤𝑤𝑥𝑥𝑥𝑥2 − 𝑤𝑤𝑥𝑥𝑥𝑥𝑤𝑤𝑥𝑥𝑥𝑥) (1)

𝐷𝐷(𝐼𝐼 − 𝑅𝑅)∇4𝑤𝑤 = 𝑞𝑞 + ℎ[Φ𝑥𝑥𝑥𝑥𝑤𝑤𝑥𝑥𝑥𝑥 − 2Φ𝑥𝑥𝑥𝑥𝑤𝑤𝑥𝑥𝑥𝑥 + Φ𝑥𝑥𝑥𝑥𝑤𝑤𝑥𝑥𝑥𝑥] (2)

where
Φ denotes the airy stress function that must be calculated from the boundary conditions 
and in-plane forces
a is the length
b is the width and h is the thickness of plate
w is the deflection
k is the assumed external damping coefficient
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k is the assumed external damping coefficient
q is the lateral distributed load, 
E is the young’s modulus of elasticity
D is the flexural stiffness
p is the density per unit area of plate
I is the identity operator 
R is the relaxation kernel

In this paper, we consider two dimensional simply supported plate 
and a general non-aging viscoelastic material whose relaxation kernel 
can be assumed as (Potapov, 1999).

q is the lateral distributed load, 
E is the young’s modulus of elasticity
D is the flexural stiffness
ρ is the density per unit area of plate
I is the identity operator 
R is the relaxation kernel

In this paper, we consider two dimensional simply supported plate and a general non-
aging viscoelastic material whose relaxation kernel can be assumed as (Potapov, 1999).

𝑅𝑅0(𝑡𝑡 − 𝜏𝜏) = 𝜒𝜒𝜒𝜒𝑒𝑒−𝜒𝜒(𝑡𝑡−𝜏𝜏) (3)

where χ and L are the viscoelastic material properties. Here, and to solve the 
examples in this article, the numerical values of these article are taken from (Potapov, 
1999) which are both equal to 0.3.

One of the best methods used to solve the partial differential equation of the continuous 
vibratory system is the Galerkin's method (Rao, 2004). Here, the deflection can be 
written by series of eigen-functions as:

𝑤𝑤(𝑥𝑥, 𝑡𝑡) = � �𝑊𝑊�𝑚𝑚𝑚𝑚(𝑡𝑡)sin (
𝑚𝑚𝑚𝑚𝑥𝑥
𝑎𝑎

)
∞

𝑚𝑚=1

∞

𝑚𝑚=1

sin (
𝑛𝑛𝑚𝑚𝑛𝑛
𝑏𝑏

)
(4)

For the first vibration mode, the deflection w can be expressed as:

𝑤𝑤 = 𝑊𝑊� sin (
𝑚𝑚𝑥𝑥
𝑎𝑎

)sin (
𝑚𝑚𝑛𝑛
𝑏𝑏

) (5)

Now, after computing the airy stress function, one can multiply the obtained relation to 

sin sinx y
a b
π π and then integrate on the domain and reach to:

𝑥𝑥" + 2𝜀𝜀𝑥𝑥′ + (𝐼𝐼 − 𝑅𝑅)𝑥𝑥 − 𝛼𝛼 �𝑁𝑁𝑥𝑥 +
𝑎𝑎2

𝑏𝑏2
𝑁𝑁𝑦𝑦� 𝑥𝑥 + 𝛽𝛽𝑥𝑥(𝐼𝐼 − 𝑅𝑅)𝑥𝑥2 = 𝑃𝑃𝑟𝑟

(6)

where 
𝛽𝛽 = 3

4
(1 − 𝜐𝜐2) 𝑎𝑎4+𝑏𝑏4

(𝑎𝑎2+𝑏𝑏2)2
 ,   𝑃𝑃𝑟𝑟 = 16𝑎𝑎4𝑏𝑏4

𝜋𝜋6ℎ𝐷𝐷(𝑎𝑎2+𝑏𝑏2)2
𝑞𝑞 ,   2𝜀𝜀 = 𝑘𝑘

𝜌𝜌ℎ𝜔𝜔
,   α = 𝜋𝜋2

𝐷𝐷𝑎𝑎2
(𝜋𝜋

2

𝑎𝑎2
+ 𝜋𝜋2

𝑏𝑏2
)−2;

𝜔𝜔2 = 𝐷𝐷
𝜌𝜌ℎ

(𝜋𝜋
2

𝑎𝑎2
+ 𝜋𝜋2

𝑏𝑏2
);

𝜏𝜏 = 𝜔𝜔𝑡𝑡 ,    𝑥𝑥 = 𝑤𝑤�
ℎ

 ,    (. )′ = 𝜕𝜕
𝜕𝜕𝜏𝜏

, (7)

and Nx, Ny are non in-plane forces along x and y direction respectively. 

All the parameters introduced in Equation (6) relate to plate properties except the scaled 
lateral and in-plane forces that must be evaluated from CFD. Here, of course, we face 
with a stochastic ODE that must be simulated and solved via one of the appropriate 
simulators such as Monte Carlo simulation.
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and Nx, Ny are non in-plane forces along x and y direction respectively. 

All the parameters introduced in Equation (6) relate to plate properties except the scaled 
lateral and in-plane forces that must be evaluated from CFD. Here, of course, we face 
with a stochastic ODE that must be simulated and solved via one of the appropriate 
simulators such as Monte Carlo simulation.
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and Nx, Ny are non in-plane forces along x and y direction respectively. 

All the parameters introduced in Equation (6) relate to plate properties except the scaled 
lateral and in-plane forces that must be evaluated from CFD. Here, of course, we face 
with a stochastic ODE that must be simulated and solved via one of the appropriate 
simulators such as Monte Carlo simulation.
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and Nx, Ny are non in-plane forces along x and y direction respectively. 

All the parameters introduced in Equation (6) relate to plate properties 
except the scaled lateral and in-plane forces that must be evaluated 
from CFD. Here, of course, we face with a stochastic ODE that must 
be simulated and solved via one of the appropriate simulators such as 
Monte Carlo simulation.

This simulation is computational algorithm that relies on repeated 
random sampling to obtain numerical results and is useful for 
obtaining numerical solutions to stochastic problems which are too 
complicated to solve analytically (Fishman, 1995). They are often used 
in simulating systems with many coupled degrees of freedom, such 
as fluids, disordered materials, strongly coupled solids, and cellular 
structures and are most suited to be applied when it is impossible to 
obtain a deterministic algorithm. Here and in this article, we use this 
simulation by a written code in MATLAB to generate the random data 
and solve the ODEs properly.

2.2  governing eQuationS of fluiD flow

Governing equations for ideal compressible flow that are considered 
by the software are continuity equation, momentum, energy and 
the equation of state as presented below.  Knowing that the flow is 
turbulent, we consider the Spalart-Allmaras model designed especially 
for aerospace applications involving wall-bounded flows and has been 
shown to give good results for boundary layers subjected to adverse 
pressure gradients (Anderson, 1995).
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obtain numerical results and is useful for obtaining numerical solutions to stochastic 
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to be applied when it is impossible to obtain a deterministic algorithm. Here and in this 
article, we use this simulation by a written code in MATLAB to generate the random 
data and solve the ODEs properly.

2.2 Governing equations of fluid flow
 
Governing equations for ideal compressible flow that are considered by the software are
continuity equation, momentum, energy and the equation of state as presented below.
Knowing that the flow is turbulent, we consider the Spalart-Allmaras model designed 
especially for aerospace applications involving wall-bounded flows and has been shown 
to give good results for boundary layers subjected to adverse pressure gradients 
(Anderson, 1995).
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𝑝𝑝 = 𝜕𝜕𝜌𝜌𝑇𝑇 (11)

These four equations are solved to obtain the flow field. As indicated previously, in the 
method presented in this article, these equations must be solved for different deflections
of plate. Using this approach and to reduce the amount of calculation, we choose steady 
solution which shows completely admissible errors with respect to non steady full FSI 
simulator ,see Table 1.

Table 1. Deflection rate of the plate and the flow velocity along z direction

Mach number Max. deflection rate 
of the plate (m/s)

Flow Velocity 
magnitude(m/s)

Flow velocity along z 
direction (m/s)

0.3 0.0731 104.1263 18.0813
0.4 0.0728 138.8351 24.1085
0.6 0.0720 208.2526 36.1627
0.8 0.0709 277.6702 48.2169

 
3.0 THE NONLINEAR BEHAVIOR OF THE CONVENTIONAL 

VISCOELASTIC PLATE
 
Since Equation 6 is transformed to a non dimensional format, it can be used to study the 
nonlinear behavior of several plates. Here, to obtain more feasible results, a specific 
geometry for the plate is chosen and to prepare the bank of data, the flow field is 
obtained for four values of Mach numbers including ten different types of deflection of 
the plate. Note also that to ensure about the results regardless of the number of grids, 
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Table 1. Deflection rate of the plate and the flow velocity along z 
direction
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Since Equation 6 is transformed to a non dimensional format, it can be 
used to study the nonlinear behavior of several plates. Here, to obtain 
more feasible results, a specific geometry for the plate is chosen and to 
prepare the bank of data, the flow field is obtained for four values of 
Mach numbers including ten different types of deflection of the plate. 
Note also that to ensure about the results regardless of the number of 
grids, four different grid numbers, i.e. 1 million, 1.38 million, 1.7 million 
and 2 millions are considered but finally, and due to negligible changes 
in the flow fields larger than the 1.38 million grids, it is selected. In table 
2, the properties of the solved plate are tabulated.

Table 2. Properties of the plate 1

four different grid numbers, i.e. 1 million, 1.38 million, 1.7 million and 2 millions are 
considered but finally, and due to negligible changes in the flow fields larger than the 
1.38 million grids, it is selected. In table 2, the properties of the solved plate are 
tabulated.

Table 2. Properties of the plate 1

a (m) b (m) h (m) Young's modulus of Elasticity (Pa) Poisson ratio

1 1 0.1 70×109 0.34

After the bank of data is obtained, using an interpolation process, the needed statistical 
properties are extracted, evaluated and applied as random forcing functions to the 
Monte Carlo simulation. The latter simulator, now, computes the statistical properties of 
the response of the plate.

3.1 Results for the flow its Mach equals to 0.3

The examples are solved for the initial velocities corresponding to each Mach and 
atmospheric pressure for the total domain. Figure 2 shows the mesh created to solve 
CFD for the case when the middle point deflection of the plate is equal to 0.04.These 
deflections are arranged with respect to the normal modes of plate, i.e. those presented 
in Equation 4.
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Figure 2. (a) Typical isometric view of the mesh used to solve the CFD, (b) Zoomed area of mesh on the 
plate and (c) Front view of the mesh

Solving the CFD code, the aerodynamic forces obtained along x (opposite flow)  and z
direction for different Mach numbers, themselves, including some deflections shown in 
Tables 3 to 6. See also Figure 1. Generally, if the angle of attack is denoted by θ (which 
is equal to 100 in this paper), the lateral and in-plane forces applied to plate becomes:

𝑁𝑁𝑥𝑥 = 𝑁𝑁𝑥𝑥𝑥𝑥 cos(θ) + 𝑁𝑁𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠(θ) (12)
𝑞𝑞 = 𝑞𝑞𝑥𝑥 cos(θ) + 𝑞𝑞𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠(θ) (13)
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In each case, processing these forces and applying them to simulator, the behavior of the 
plate is obtained. See the evolution of the dimensionless displacements, their rates and
the phase plane diagrams in Figures 3 to 7.
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four different grid numbers, i.e. 1 million, 1.38 million, 1.7 million and 2 millions are 
considered but finally, and due to negligible changes in the flow fields larger than the 
1.38 million grids, it is selected. In table 2, the properties of the solved plate are 
tabulated.

Table 2. Properties of the plate 1

a (m) b (m) h (m) Young's modulus of Elasticity (Pa) Poisson ratio

1 1 0.1 70×109 0.34
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in Equation 4.
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Figure 2. (a) Typical isometric view of the mesh used to solve the CFD, (b) Zoomed area of mesh on the 
plate and (c) Front view of the mesh

Solving the CFD code, the aerodynamic forces obtained along x (opposite flow)  and z
direction for different Mach numbers, themselves, including some deflections shown in 
Tables 3 to 6. See also Figure 1. Generally, if the angle of attack is denoted by θ (which 
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In each case, processing these forces and applying them to simulator, the behavior of the 
plate is obtained. See the evolution of the dimensionless displacements, their rates and
the phase plane diagrams in Figures 3 to 7.

Table 3. Applied aerodynamic forces of example 3.1 obtained from CFD
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the response of the plate.

3.1 Results for the flow its Mach equals to 0.3

The examples are solved for the initial velocities corresponding to each Mach and 
atmospheric pressure for the total domain. Figure 2 shows the mesh created to solve 
CFD for the case when the middle point deflection of the plate is equal to 0.04.These 
deflections are arranged with respect to the normal modes of plate, i.e. those presented 
in Equation 4.

(a)                                       (b)                                                  (c)

Figure 2. (a) Typical isometric view of the mesh used to solve the CFD, (b) Zoomed area of mesh on the 
plate and (c) Front view of the mesh

Solving the CFD code, the aerodynamic forces obtained along x (opposite flow)  and z
direction for different Mach numbers, themselves, including some deflections shown in 
Tables 3 to 6. See also Figure 1. Generally, if the angle of attack is denoted by θ (which 
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Figure 3. The evolution of (a) dimensionless displacement w.r.t scaled time, (b) dimensionless 
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Figure 3. The evolution of (a) dimensionless displacement w.r.t scaled time, (b) dimensionless 
displacement rate w.r.t scaled time and (c) The phase plane of the behavior of the plate of example 3.1

3.2 Results for the flow its Mach equals to 0.4
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Figure 3. The evolution of (a) dimensionless displacement w.r.t scaled time, (b) dimensionless 
displacement rate w.r.t scaled time and (c) The phase plane of the behavior of the plate of example 3.1

3.2 Results for the flow its Mach equals to 0.4
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Figure 5. The evolution of (a) dimensionless displacement w.r.t scaled time, (b) dimensionless 
displacement rate w.r.t scaled time and (c) The phase plane of the behavior of the plate of example 3.3

3.4 Results for the flow its Mach equals to 0.8
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Table 5. Applied aerodynamic forces of example 3.3 obtained from CFD
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Figure 5. The evolution of (a) dimensionless displacement w.r.t scaled time, (b) dimensionless 
displacement rate w.r.t scaled time and (c) The phase plane of the behavior of the plate of example 3.3

3.4 Results for the flow its Mach equals to 0.8
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Figure 5. The evolution of (a) dimensionless displacement w.r.t scaled 
time, (b) dimensionless displacement rate w.r.t scaled time and (c) The 

phase plane of the behavior of the plate of example 3.3

3.4 Results for the flow its Mach equals to 0.8

Table 6. Applied aerodynamic forces of example 3.4 obtained from CFD
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Figure 6. The evolution of (a) dimensionless displacement w.r.t scaled time, (b) dimensionless 
displacement rate w.r.t scaled time and (c) The phase plane of the behavior of the plate of example 3.4

As drawn in Figures (3-6), in all cases, the response (deflection) of the plate shows 
stable focus in the origin of the phase plane which means that the nonlinear vibration of 
plate decays in an oscillatory manner about origin. In Equation (6), if the dynamic terms 
vanish, we face with a third order polynomial, in general, has three roots that represent 
the equilibrium points of oscillator. Here, the origin of the phase plane (x = 0) is the 
dominant and of course demanded equilibrium point of the oscillator see Equation (6).
This shows a good agreement with that was found in literature for random vibration of 
plates under laterally random forcing function (see for example Asnafi (2011 and
2012)).
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displacement rate w.r.t scaled time and (c) The phase plane of the behavior of the plate of example 3.4

As drawn in Figures (3-6), in all cases, the response (deflection) of the plate shows 
stable focus in the origin of the phase plane which means that the nonlinear vibration of 
plate decays in an oscillatory manner about origin. In Equation (6), if the dynamic terms 
vanish, we face with a third order polynomial, in general, has three roots that represent 
the equilibrium points of oscillator. Here, the origin of the phase plane (x = 0) is the 
dominant and of course demanded equilibrium point of the oscillator see Equation (6).
This shows a good agreement with that was found in literature for random vibration of 
plates under laterally random forcing function (see for example Asnafi (2011 and
2012)).
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Figure 6. The evolution of (a) dimensionless displacement w.r.t scaled 
time, (b) dimensionless displacement rate w.r.t scaled time and (c) The 

phase plane of the behavior of the plate of example 3.4

As drawn in Figures (3-6), in all cases, the response (deflection) of the 
plate shows stable focus in the origin of the phase plane which means 
that the nonlinear vibration of plate decays in an oscillatory manner 
about origin. In Equation (6), if the dynamic terms vanish, we face with 
a third order polynomial, in general, has three roots that represent the 
equilibrium points of oscillator. Here, the origin of the phase plane 
(x = 0) is the dominant and of course demanded equilibrium point of 
the oscillator see Equation (6). This shows a good agreement with that 
was found in literature for random vibration of plates under laterally 
random forcing function (see for example Asnafi (2011 and 2012)). 
In subsonic flow and relative to this thickness of plate, any other 
qualitatively different behaviors were not seen. In other words, the 
plate converges to its dominant equilibrium point located at the origin 
of the phase plane.  In what follows, the procedure is repeated for a 
thinner plate to check about other nonlinear behaviors or instabilities.

4.0 THE NONLINEAR BEHAVIOR OF A THINNER 
viSCoelaStiC Plate

The properties of the plate used to investigate the following examples 
are tabulated in Table 7.
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Table 7. Properties of the thinner plate

In subsonic flow and relative to this thickness of plate, any other qualitatively different 
behaviors were not seen. In other words, the plate converges to its dominant equilibrium 
point located at the origin of the phase plane. In what follows, the procedure is repeated
for a thinner plate to check about other nonlinear behaviors or instabilities.

4.0 THE NONLINEAR BEHAVIOR OF A THINNER VISCOELASTIC
PLATE

The properties of the plate used to investigate the following examples are tabulated in 
Table 7.

Table 7. Properties of the thinner plate

a (m) b (m) h (m) Young's modulus of Elasticity (Pa) Poisson ratio

1 1 0.02 example 4.1 70×109 0.34

example* 4.2 2.5×106

*Taken from ANSYS CFX Tutorials (ANSYS Cooperation, 2010)

4.1 Example 4.1
 
Similar to that was done in section 3, the flow field is solved for different Mach 
numbers and then the behavior of the plate is obtained. Here to avoid prolixity, only the 
final behavior of the plate in each Mach number is reported.

Relative to the obtained results, it was recognized that in all case studies and Mach 
numbers (0.3 to 0.8) the behavior presents stable focus. Here to avoid prolixity, only the 
final behavior of the plate in each Mach number is reported by phase plane (see Figure 
7).
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4.1 Example 4.1

Similar to that was done in section 3, the flow field is solved for different 
Mach numbers and then the behavior of the plate is obtained. Here 
to avoid prolixity, only the final behavior of the plate in each Mach 
number is reported.

Relative to the obtained results, it was recognized that in all case studies 
and Mach numbers (0.3 to 0.8) the behavior presents stable focus. Here 
to avoid prolixity, only the final behavior of the plate in each Mach 
number is reported by phase plane (see Figure 7).

In subsonic flow and relative to this thickness of plate, any other qualitatively different 
behaviors were not seen. In other words, the plate converges to its dominant equilibrium 
point located at the origin of the phase plane. In what follows, the procedure is repeated
for a thinner plate to check about other nonlinear behaviors or instabilities.

4.0 THE NONLINEAR BEHAVIOR OF A THINNER VISCOELASTIC
PLATE

The properties of the plate used to investigate the following examples are tabulated in 
Table 7.

Table 7. Properties of the thinner plate

a (m) b (m) h (m) Young's modulus of Elasticity (Pa) Poisson ratio

1 1 0.02 example 4.1 70×109 0.34

example* 4.2 2.5×106

*Taken from ANSYS CFX Tutorials (ANSYS Cooperation, 2010)

4.1 Example 4.1
 
Similar to that was done in section 3, the flow field is solved for different Mach 
numbers and then the behavior of the plate is obtained. Here to avoid prolixity, only the 
final behavior of the plate in each Mach number is reported.

Relative to the obtained results, it was recognized that in all case studies and Mach 
numbers (0.3 to 0.8) the behavior presents stable focus. Here to avoid prolixity, only the 
final behavior of the plate in each Mach number is reported by phase plane (see Figure 
7).
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(c)                                                                       (d)

Figure 7. Phase plane of evolution dimensionless displacement versus dimensionless displacement rate 
for the flow its mach equals to (a) 0.3, (b) 0.4, (c) 0.6, and (d) 0.8

4.2 Example 4.2

Here the procedure is repeated but it was recognized that in all case studies and Mach 
numbers (0.3 to 0.8) the behavior becomes completely unstable. See Figure 8 which 
show flutter instabilities at different mach numbers. 

(a)                                                                          (b)

(c)                                                                               (d)

Figure 8. The phase plane diagram of the plate of example 4.2 at Mach number equals to (a) 0.4, (b) 0.6 
and (c) 0.8  
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Figure 7. Phase plane of evolution dimensionless displacement versus 
dimensionless displacement rate for the flow its mach equals to (a) 0.3, 

(b) 0.4, (c) 0.6, and (d) 0.8

4.2 Example 4.2

Here the procedure is repeated but it was recognized that in all case 
studies and Mach numbers (0.3 to 0.8) the behavior becomes completely 
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unstable. See Figure 8 which show flutter instabilities at different mach 
numbers. 

(c)                                                                       (d)

Figure 7. Phase plane of evolution dimensionless displacement versus dimensionless displacement rate 
for the flow its mach equals to (a) 0.3, (b) 0.4, (c) 0.6, and (d) 0.8

4.2 Example 4.2

Here the procedure is repeated but it was recognized that in all case studies and Mach 
numbers (0.3 to 0.8) the behavior becomes completely unstable. See Figure 8 which 
show flutter instabilities at different mach numbers. 

(a)                                                                          (b)

(c)                                                                               (d)

Figure 8. The phase plane diagram of the plate of example 4.2 at Mach number equals to (a) 0.4, (b) 0.6 
and (c) 0.8  
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Figure 8. The phase plane diagram of the plate of example 4.2 at Mach 

number equals to (a) 0.3 (b) 0.4, (c) 0.6 and (d) 0.8 

To validate the results obtained by this method and other conventional 
methods presented in literature for randomly excited plates, an analogy 
between the results obtained by the code written in (Asnafi, 2001) for 
randomly exited plate whose statistical properties are the same as those 
for the plate located in subsonic flow (M = 0.3) is held. See Figure 9 for 
more details.
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To validate the results obtained by this method and other conventional methods 
presented in literature for randomly excited plates, an analogy between the results 
obtained by the code written in (Asnafi, 2001) for randomly exited plate whose 
statistical properties are the same as those for the plate located in subsonic flow (M = 
0.3) is held. See Figure 9 for more details.

Figure 9. The analogy between the phase plane diagram of the plate solved in this article at Mach equals 
to 0.3 and one obtained by (Asnafi, 2001) for randomly excited plate with corresponding data

5.0 A DISCUSSION ON THE TIME OF SOLUTION

Here, a simple analogy between the time consumed by the method presented in this 
article and the conventional FSI method in Ansys CFX is made. Generally, the unsteady 
simultaneous solution of fluid structure interaction in ansys CFX for simply supported 
plate shows weak convergence and CFX linear solver fails in many cases. Of course the 
plate with fixed supports in incompressible flows can reach a good convergence, but in 
compressible flows it also suffers from weak convergence. In other words, FSI two-
dimensional incompressible flow solution around a plate with fixed supports is more 
expensive than three-dimensional compressible flow solution around a plate with simple 
supports simulated by present method. Note also that the vibration of plate with fixed 
supports is decayed faster than the same plate with simple supports. In Table 8, these 
method are compared which shows a relatively good time consumption for the present 
method.
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Figure 9. The analogy between the phase plane diagram of the plate 
solved in this article at Mach equals to 0.3 and one obtained by (Asnafi, 

2001) for randomly excited plate with corresponding data

5.0 a DiSCuSSion on the time of Solution

Here, a simple analogy between the time consumed by the method 
presented in this article and the conventional FSI method in Ansys 
CFX is made. Generally, the unsteady simultaneous solution of fluid 
structure interaction in ansys CFX for simply supported plate shows 
weak convergence and CFX linear solver fails in many cases. Of course 
the plate with fixed supports in incompressible flows can reach a 
good convergence, but in compressible flows it also suffers from weak 
convergence. In other words, FSI two-dimensional incompressible 
flow solution around a plate with fixed supports is more expensive 
than three-dimensional compressible flow solution around a plate 
with simple supports simulated by present method. Note also that the 
vibration of plate with fixed supports is decayed faster than the same 
plate with simple supports. In Table 8, these method are compared 
which shows a relatively good time consumption for the present 
method.

Table 8. Compared solution time of statistical method and the FSI 
method (ANSYS CFX)Table 8. Compared solution time of statistical method and the FSI method (ANSYS CFX)

Solution 
method

Flow 
velocity

(m/s)

Mach 
number

Solution 
Algorithm

Flow 
geometry

Turbolent 
model

Flow type Flow Grid 
number

Solution of 
plate 

dynamic

Solution 
time

(hours)
Present 
work

104.12 0.3 SIMPLE 3D Spalart 
Allmaras

Compressible Steady 1.38*10
^6

Monte carlo 
simulation

Approxim
ate 8

FSI in
ANSYS 
CFX

15 - COUPLED 2D SST K-ω In-
compressible

Unsteady Less 
than 
30000

Finite 
Element

Approxim
ate 10

FSI in
ANSYS 
CFX

110 - COUPLED 2D SST K-ω Compressible Unsteady Less 
than 
30000

Finite 
Element

Approxim
ate 30

6.0 CONCLUSIONS

In this paper, a method to investigate the behavior of non-aging viscoelastic plates in 
sub sonic flow as an example of the fluid-solid interaction problems is presented. The 
method especially is applied to a two dimensional simply supported viscoelastic plate
located in the subsonic flow. After choosing the most efficient mesh grids, the 
aerodynamic forces are obtained by CFD and then modeled by stochastic variables and 
finally applied to Monte Carlo simulation which is arranged to solve randomly excited 
nonlinear ODEs. After the method is validated, the nonlinear behaviors of a 
conventional and an almost thin non-aging viscoelastic plate are obtained. The results 
obtained by this method can predict some famous nonlinear behavior and instabilities 
such as bifurcation in the plate response. Specifically it is shown that in subsonic flow 
and for a plate whose aspect ratio is less than or equal to 10, the behaviors for different 
Mach numbers exhibits stable foci which means that the oscillations decay about 
dominant equilibrium point oscillatory. Of course, for thinner plate, i.e. when the 
flexural stiffness decreases, the instability such as flutter due to bifurcation may occur 
also. Finally a discussion on the time of solution is presented shows the current method 
consumed specifically less time than other conventional FSI methods.
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6.0 CONCLUSIONS

In this paper, a method to investigate the behavior of non-aging 
viscoelastic plates in sub sonic flow as an example of the fluid-solid 
interaction problems is presented. The method especially is applied 
to a two dimensional simply supported viscoelastic plate located 
in the subsonic flow. After choosing the most efficient mesh grids, 
the aerodynamic forces are obtained by CFD and then modeled by 
stochastic variables and finally applied to Monte Carlo simulation 
which is arranged to solve randomly excited nonlinear ODEs. After 
the method is validated, the nonlinear behaviors of a conventional and 
an almost thin non-aging viscoelastic plate are obtained. The results 
obtained by this method can predict some famous nonlinear behavior 
and instabilities such as bifurcation in the plate response. Specifically it 
is shown that in subsonic flow and for a plate whose aspect ratio is less 
than or equal to 10, the behaviors for different Mach numbers exhibits 
stable foci which means that the oscillations decay about dominant 
equilibrium point oscillatory. Of course, for thinner plate, i.e. when 
the flexural stiffness decreases, the instability such as flutter due to 
bifurcation may occur also. Finally a discussion on the time of solution 
is presented shows the current method consumed specifically less time 
than other conventional FSI methods.
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