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ABSTRACT

Stepper motors can be used to provide open-loop motion control in 
mechanisms.  Unlike servo controlled mechanisms, however, the rotational 
drive input error cannot be resolved below the step error in the motor.  
Therefore, there is a fixed level of rotational position error that must be 
accepted in stepper driven mechanisms, and this rotational position error 
will inevitably propagate to kinematic position error in the mechanism.  In 
this paper, the direct linearization method will be used to derive a model for 
kinematic position error based on uncertainty in the rotational input angle 
of a mechanism.  Using this model, a method of constrained optimization 
to design a mechanism to minimize the effect of uncertain input conditions 
on kinematic position will be presented.  The method is based on entropy 
minimization techniques that have been applied in a variety of robotic 
system applications.  The method will be demonstrated in a case study, 
and will be shown to optimize the positioning reliability of a mechanism 
under input angle errors. The method will be shown to accurately predict 
drive error propagation, through comparison to Monte Carlo simulation.  
When coupled with entropy-based system reliability optimization methods, 
optimal mechansims can be synthesized in response to various positioning 
constraints.
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1.0	 INTRODUCTION

Stepper motors offer the ability to provide precise motion control 
without the need for closed-loop control systems. As the motor will 
index a fixed rotational increment with each pulse applied to the motor, 
simple step-counting control methods can be used for position control. 
However, the positioning accuracy of a stepper motor is a physical 
limitation of the motor itself. Stepper motor accuracy is typically rated 
as a percentage of the motor step size; this accuracy is a property of 
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motor construction, and cannot be increased through traditional closed-
loop control methods. For example, a typical stepper motor might be 
rated at 1.8°/step, with an accuracy of +/- 5%. Since this motor accuracy 
is a function of motor design, it cannot be reduced through feedback 
control methods.

Since stepper motor error is inherent in the design of the motor, kinematic 
mechanisms driven by stepper motors are prone to positioning errors, 
as the actuator error propagates through the mechanism. The effect of 
kinematic errors on planar mechanisms has been studied by numerous 
researchers, including many recent efforts. Pandey and Zhang 
propose an entropy method for optimizing the reliability of robotic 
manipulator positioning (Pandey & Zhang, 2012; Zhang & Pandey, 
2013).  This approach uses simulation trials to evaluate the position 
error distribution of the manipulator under joint angle uncertainties.  
Approaches based on strain-energy error minimization (Aviles, et al., 
2009)  have been developed for optimal synthesis of planar linkages. 
A method based on reliability optimization using covariance matrix 
estimates has also been proposed (Huang & Zhang, 2010, 2012).  Each 
of these methods can be used to provide some measure of design under 
uncertainty for a planar mechanism. 

Methods based on direct linearization to  estimate the effect of 
parameter variation on mechanism position provide perhaps the most 
promising approach to quantifying uncertainty in planar mechanisms 
(Wittwer et al., 2004; Leishman & Chase, 2010). In this paper, these direct 
linearization methods will be adapted for use in the optimal design 
of stepper-driven planar mechanisms. These methods will be shown 
to be consistent with other entropy-based approaches to kinematic 
optimization (Musto, 2002).

2.0	 DIRECT LINEARIZATION MODEL OF A STEPPER-
DRIVEN FOUR BAR LINKAGE WITH ERROR IN THE 
DRIVE ANGLE

Researchers  have demonstrated that the direct linearization method 
(DLM) can be used to accurately model the effect of manufacturing 
tolerances on link lengths in a kinematic linkage (Wittwer et al., 2004; 
Leishman & Chase, 2010). In this section, the DLM will be modified 
to generate a model for kinematic position error based on error in 
the input angle. It is this input angle, which is inherent when stepper 
motors are used to drive mechanisms, which will be considered in the 
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remainder of this paper.

Consider the four-bar linkage, shown in Figure 1.  
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Figure 1. The four-bar linkage

The loop equation for this mechanism is:

𝑎⃑𝑎 + 𝑏𝑏�⃑ − 𝑐𝑐 − 𝑑𝑑 = 0 (1)

This loop equation can be expanded to the following scalar equations:
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𝑎⃑𝑎 + 𝑏𝑏�⃑ − 𝑐𝑐 − 𝑑𝑑 = 0 (1)

This loop equation can be expanded to the following scalar equations:
This loop equation can be expanded to the following scalar equations:

ℎ1(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 cos 𝜃𝜃2 +  𝑏𝑏 cos𝜃𝜃3 − 𝑐𝑐 cos 𝜃𝜃4 − 𝑑𝑑 = 0 (2)

ℎ2(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 sin 𝜃𝜃2 +  𝑏𝑏 sin 𝜃𝜃3 − 𝑐𝑐 sin 𝜃𝜃4 = 0 (3)

If the coupler point is considered to be the point that represents the desired position of 
the mechanism, then the equations describing the position of this point can also be 
written in scalar form:

𝑃𝑃𝑥𝑥(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 cos 𝜃𝜃2 +  𝑒𝑒 cos(𝛼𝛼 + 𝜃𝜃3) (4)

𝑃𝑃𝑦𝑦(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 sin𝜃𝜃2 +  𝑒𝑒 sin(𝛼𝛼 + 𝜃𝜃3) (5)

where 𝑃𝑃𝑥𝑥 and 𝑃𝑃𝑦𝑦 represent the x and y positions of the coupler point 𝑃𝑃.

In the positioning of the mechanism, the input angle 𝜃𝜃2 is uncertain; the error associated 
with the angle is 𝛿𝛿2. The error associated with 𝜃𝜃2 results in deviations from nominal 
values for 𝜃𝜃3 and 𝜃𝜃4 as well; these errors are defined as 𝛿𝛿3 and 𝛿𝛿4. Applying Equations
(2) to (5) to the mechanism with uncertainty in positioning leads to the following 
modified equations:

ℎ1(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 cos(𝜃𝜃2 + 𝛿𝛿2) +  𝑏𝑏 cos(𝜃𝜃3 + 𝛿𝛿3) − 𝑐𝑐 cos(𝜃𝜃4 + 𝛿𝛿4) − 𝑑𝑑 = 0 (6)

ℎ2(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 sin(𝜃𝜃2 + 𝛿𝛿2) +  𝑏𝑏 sin(𝜃𝜃3 + 𝛿𝛿3) − 𝑐𝑐 sin(𝜃𝜃4 + 𝛿𝛿4) = 0 (7)

𝑃𝑃𝑥𝑥(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 cos(𝜃𝜃2 + 𝛿𝛿2) +  𝑒𝑒 cos(𝛼𝛼 + 𝜃𝜃3 + 𝛿𝛿3) (8)

𝑃𝑃𝑦𝑦(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 sin(𝜃𝜃2 + 𝛿𝛿2) +  𝑒𝑒 sin(𝛼𝛼 + 𝜃𝜃3 + 𝛿𝛿3) (9)

Applying trigonometric identities, and linearizing by invoking the small angle 
approximation, yields:

ℎ1(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (cos𝜃𝜃2 − 𝛿𝛿2 sin𝜃𝜃2) +  𝑏𝑏 (cos𝜃𝜃3 − 𝛿𝛿3 sin𝜃𝜃3) −              
𝑐𝑐 (cos𝜃𝜃4 − 𝛿𝛿4 sin 𝜃𝜃4) − 𝑑𝑑 = 0 (10)

ℎ2(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (sin𝜃𝜃2 + 𝛿𝛿2 cos 𝜃𝜃2) +  𝑏𝑏 (sin𝜃𝜃3 + 𝛿𝛿3 cos 𝜃𝜃3) −
𝑐𝑐 (sin𝜃𝜃4 + 𝛿𝛿4 cos 𝜃𝜃4) = 0 (11)

𝑃𝑃𝑥𝑥(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (cos 𝜃𝜃2 − 𝛿𝛿2 sin𝜃𝜃2) +  𝑒𝑒 cos𝛼𝛼 (cos𝜃𝜃3 − 𝛿𝛿3 sin𝜃𝜃3) −
𝑒𝑒 sin𝛼𝛼 (sin𝜃𝜃3 + 𝛿𝛿3 cos 𝜃𝜃3)                                                          (12)

𝑃𝑃𝑦𝑦(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (sin𝜃𝜃2 + 𝛿𝛿2 cos 𝜃𝜃2) +  𝑒𝑒 sin𝛼𝛼 (cos𝜃𝜃3 − 𝛿𝛿3 sin𝜃𝜃3) +
𝑒𝑒 cos𝛼𝛼 (sin𝜃𝜃3 + 𝛿𝛿3 cos 𝜃𝜃3)                                                         (13)

Isolating the error terms only in Equations (10) and (11) yields:
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ℎ2(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (sin𝜃𝜃2 + 𝛿𝛿2 cos 𝜃𝜃2) +  𝑏𝑏 (sin𝜃𝜃3 + 𝛿𝛿3 cos 𝜃𝜃3) −
𝑐𝑐 (sin𝜃𝜃4 + 𝛿𝛿4 cos 𝜃𝜃4) = 0 (11)

𝑃𝑃𝑥𝑥(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (cos 𝜃𝜃2 − 𝛿𝛿2 sin𝜃𝜃2) +  𝑒𝑒 cos𝛼𝛼 (cos𝜃𝜃3 − 𝛿𝛿3 sin𝜃𝜃3) −
𝑒𝑒 sin𝛼𝛼 (sin𝜃𝜃3 + 𝛿𝛿3 cos 𝜃𝜃3)                                                          (12)

𝑃𝑃𝑦𝑦(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (sin𝜃𝜃2 + 𝛿𝛿2 cos 𝜃𝜃2) +  𝑒𝑒 sin𝛼𝛼 (cos𝜃𝜃3 − 𝛿𝛿3 sin𝜃𝜃3) +
𝑒𝑒 cos𝛼𝛼 (sin𝜃𝜃3 + 𝛿𝛿3 cos 𝜃𝜃3)                                                         (13)

Isolating the error terms only in Equations (10) and (11) yields:

�−𝑎𝑎 sin 𝜃𝜃2
𝑎𝑎 cos 𝜃𝜃2

� 𝛿𝛿2 + �−𝑏𝑏 sin𝜃𝜃3 𝑐𝑐 sin𝜃𝜃4
𝑏𝑏 cos 𝜃𝜃3 −𝑐𝑐 cos 𝜃𝜃4

� �𝛿𝛿3𝛿𝛿4
� = �00� (14)

where Px and Py represent the x and y positions of the coupler point P.  

In the positioning of the mechanism, the input angle θ2 is uncertain; 
the error associated with the angle is δ2. The error associated with θ2 
results in deviations from nominal values for θ3 and θ4 as well; these 
errors are defined as δ3 and δ4. Applying Equations (2) to (5) to the 
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mechanism with uncertainty in positioning leads to the following 
modified equations:

ℎ1(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 cos 𝜃𝜃2 +  𝑏𝑏 cos𝜃𝜃3 − 𝑐𝑐 cos 𝜃𝜃4 − 𝑑𝑑 = 0 (2)

ℎ2(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 sin 𝜃𝜃2 +  𝑏𝑏 sin 𝜃𝜃3 − 𝑐𝑐 sin 𝜃𝜃4 = 0 (3)

If the coupler point is considered to be the point that represents the desired position of 
the mechanism, then the equations describing the position of this point can also be 
written in scalar form:

𝑃𝑃𝑥𝑥(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 cos 𝜃𝜃2 +  𝑒𝑒 cos(𝛼𝛼 + 𝜃𝜃3) (4)

𝑃𝑃𝑦𝑦(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 sin𝜃𝜃2 +  𝑒𝑒 sin(𝛼𝛼 + 𝜃𝜃3) (5)

where 𝑃𝑃𝑥𝑥 and 𝑃𝑃𝑦𝑦 represent the x and y positions of the coupler point 𝑃𝑃.

In the positioning of the mechanism, the input angle 𝜃𝜃2 is uncertain; the error associated 
with the angle is 𝛿𝛿2. The error associated with 𝜃𝜃2 results in deviations from nominal 
values for 𝜃𝜃3 and 𝜃𝜃4 as well; these errors are defined as 𝛿𝛿3 and 𝛿𝛿4. Applying Equations
(2) to (5) to the mechanism with uncertainty in positioning leads to the following 
modified equations:

ℎ1(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 cos(𝜃𝜃2 + 𝛿𝛿2) +  𝑏𝑏 cos(𝜃𝜃3 + 𝛿𝛿3) − 𝑐𝑐 cos(𝜃𝜃4 + 𝛿𝛿4) − 𝑑𝑑 = 0 (6)

ℎ2(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 sin(𝜃𝜃2 + 𝛿𝛿2) +  𝑏𝑏 sin(𝜃𝜃3 + 𝛿𝛿3) − 𝑐𝑐 sin(𝜃𝜃4 + 𝛿𝛿4) = 0 (7)

𝑃𝑃𝑥𝑥(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 cos(𝜃𝜃2 + 𝛿𝛿2) +  𝑒𝑒 cos(𝛼𝛼 + 𝜃𝜃3 + 𝛿𝛿3) (8)

𝑃𝑃𝑦𝑦(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 sin(𝜃𝜃2 + 𝛿𝛿2) +  𝑒𝑒 sin(𝛼𝛼 + 𝜃𝜃3 + 𝛿𝛿3) (9)

Applying trigonometric identities, and linearizing by invoking the small angle 
approximation, yields:

ℎ1(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (cos𝜃𝜃2 − 𝛿𝛿2 sin𝜃𝜃2) +  𝑏𝑏 (cos𝜃𝜃3 − 𝛿𝛿3 sin𝜃𝜃3) −              
𝑐𝑐 (cos𝜃𝜃4 − 𝛿𝛿4 sin 𝜃𝜃4) − 𝑑𝑑 = 0 (10)

ℎ2(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (sin𝜃𝜃2 + 𝛿𝛿2 cos 𝜃𝜃2) +  𝑏𝑏 (sin𝜃𝜃3 + 𝛿𝛿3 cos 𝜃𝜃3) −
𝑐𝑐 (sin𝜃𝜃4 + 𝛿𝛿4 cos 𝜃𝜃4) = 0 (11)

𝑃𝑃𝑥𝑥(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (cos 𝜃𝜃2 − 𝛿𝛿2 sin𝜃𝜃2) +  𝑒𝑒 cos𝛼𝛼 (cos𝜃𝜃3 − 𝛿𝛿3 sin𝜃𝜃3) −
𝑒𝑒 sin𝛼𝛼 (sin𝜃𝜃3 + 𝛿𝛿3 cos 𝜃𝜃3)                                                          (12)

𝑃𝑃𝑦𝑦(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (sin𝜃𝜃2 + 𝛿𝛿2 cos 𝜃𝜃2) +  𝑒𝑒 sin𝛼𝛼 (cos𝜃𝜃3 − 𝛿𝛿3 sin𝜃𝜃3) +
𝑒𝑒 cos𝛼𝛼 (sin𝜃𝜃3 + 𝛿𝛿3 cos 𝜃𝜃3)                                                         (13)

Isolating the error terms only in Equations (10) and (11) yields:

�−𝑎𝑎 sin 𝜃𝜃2
𝑎𝑎 cos 𝜃𝜃2

� 𝛿𝛿2 + �−𝑏𝑏 sin𝜃𝜃3 𝑐𝑐 sin𝜃𝜃4
𝑏𝑏 cos 𝜃𝜃3 −𝑐𝑐 cos 𝜃𝜃4

� �𝛿𝛿3𝛿𝛿4
� = �00� (14)

Applying trigonometric identities, and linearizing by invoking the 
small angle approximation, yields:

ℎ1(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 cos 𝜃𝜃2 +  𝑏𝑏 cos𝜃𝜃3 − 𝑐𝑐 cos 𝜃𝜃4 − 𝑑𝑑 = 0 (2)

ℎ2(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 sin 𝜃𝜃2 +  𝑏𝑏 sin 𝜃𝜃3 − 𝑐𝑐 sin 𝜃𝜃4 = 0 (3)

If the coupler point is considered to be the point that represents the desired position of 
the mechanism, then the equations describing the position of this point can also be 
written in scalar form:

𝑃𝑃𝑥𝑥(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 cos 𝜃𝜃2 +  𝑒𝑒 cos(𝛼𝛼 + 𝜃𝜃3) (4)

𝑃𝑃𝑦𝑦(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 sin𝜃𝜃2 +  𝑒𝑒 sin(𝛼𝛼 + 𝜃𝜃3) (5)

where 𝑃𝑃𝑥𝑥 and 𝑃𝑃𝑦𝑦 represent the x and y positions of the coupler point 𝑃𝑃.

In the positioning of the mechanism, the input angle 𝜃𝜃2 is uncertain; the error associated 
with the angle is 𝛿𝛿2. The error associated with 𝜃𝜃2 results in deviations from nominal 
values for 𝜃𝜃3 and 𝜃𝜃4 as well; these errors are defined as 𝛿𝛿3 and 𝛿𝛿4. Applying Equations
(2) to (5) to the mechanism with uncertainty in positioning leads to the following 
modified equations:

ℎ1(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 cos(𝜃𝜃2 + 𝛿𝛿2) +  𝑏𝑏 cos(𝜃𝜃3 + 𝛿𝛿3) − 𝑐𝑐 cos(𝜃𝜃4 + 𝛿𝛿4) − 𝑑𝑑 = 0 (6)

ℎ2(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 sin(𝜃𝜃2 + 𝛿𝛿2) +  𝑏𝑏 sin(𝜃𝜃3 + 𝛿𝛿3) − 𝑐𝑐 sin(𝜃𝜃4 + 𝛿𝛿4) = 0 (7)

𝑃𝑃𝑥𝑥(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 cos(𝜃𝜃2 + 𝛿𝛿2) +  𝑒𝑒 cos(𝛼𝛼 + 𝜃𝜃3 + 𝛿𝛿3) (8)

𝑃𝑃𝑦𝑦(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 sin(𝜃𝜃2 + 𝛿𝛿2) +  𝑒𝑒 sin(𝛼𝛼 + 𝜃𝜃3 + 𝛿𝛿3) (9)

Applying trigonometric identities, and linearizing by invoking the small angle 
approximation, yields:

ℎ1(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (cos𝜃𝜃2 − 𝛿𝛿2 sin𝜃𝜃2) +  𝑏𝑏 (cos𝜃𝜃3 − 𝛿𝛿3 sin𝜃𝜃3) −              
𝑐𝑐 (cos𝜃𝜃4 − 𝛿𝛿4 sin 𝜃𝜃4) − 𝑑𝑑 = 0 (10)

ℎ2(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (sin𝜃𝜃2 + 𝛿𝛿2 cos 𝜃𝜃2) +  𝑏𝑏 (sin𝜃𝜃3 + 𝛿𝛿3 cos 𝜃𝜃3) −
𝑐𝑐 (sin𝜃𝜃4 + 𝛿𝛿4 cos 𝜃𝜃4) = 0 (11)

𝑃𝑃𝑥𝑥(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (cos 𝜃𝜃2 − 𝛿𝛿2 sin𝜃𝜃2) +  𝑒𝑒 cos𝛼𝛼 (cos𝜃𝜃3 − 𝛿𝛿3 sin𝜃𝜃3) −
𝑒𝑒 sin𝛼𝛼 (sin𝜃𝜃3 + 𝛿𝛿3 cos 𝜃𝜃3)                                                          (12)

𝑃𝑃𝑦𝑦(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (sin𝜃𝜃2 + 𝛿𝛿2 cos 𝜃𝜃2) +  𝑒𝑒 sin𝛼𝛼 (cos𝜃𝜃3 − 𝛿𝛿3 sin𝜃𝜃3) +
𝑒𝑒 cos𝛼𝛼 (sin𝜃𝜃3 + 𝛿𝛿3 cos 𝜃𝜃3)                                                         (13)

Isolating the error terms only in Equations (10) and (11) yields:

�−𝑎𝑎 sin 𝜃𝜃2
𝑎𝑎 cos 𝜃𝜃2

� 𝛿𝛿2 + �−𝑏𝑏 sin𝜃𝜃3 𝑐𝑐 sin𝜃𝜃4
𝑏𝑏 cos 𝜃𝜃3 −𝑐𝑐 cos 𝜃𝜃4

� �𝛿𝛿3𝛿𝛿4
� = �00� (14)

Isolating the error terms only in Equations (10) and (11) yields:

ℎ1(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 cos 𝜃𝜃2 +  𝑏𝑏 cos𝜃𝜃3 − 𝑐𝑐 cos 𝜃𝜃4 − 𝑑𝑑 = 0 (2)

ℎ2(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 sin 𝜃𝜃2 +  𝑏𝑏 sin 𝜃𝜃3 − 𝑐𝑐 sin 𝜃𝜃4 = 0 (3)

If the coupler point is considered to be the point that represents the desired position of 
the mechanism, then the equations describing the position of this point can also be 
written in scalar form:

𝑃𝑃𝑥𝑥(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 cos 𝜃𝜃2 +  𝑒𝑒 cos(𝛼𝛼 + 𝜃𝜃3) (4)

𝑃𝑃𝑦𝑦(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 sin𝜃𝜃2 +  𝑒𝑒 sin(𝛼𝛼 + 𝜃𝜃3) (5)

where 𝑃𝑃𝑥𝑥 and 𝑃𝑃𝑦𝑦 represent the x and y positions of the coupler point 𝑃𝑃.

In the positioning of the mechanism, the input angle 𝜃𝜃2 is uncertain; the error associated 
with the angle is 𝛿𝛿2. The error associated with 𝜃𝜃2 results in deviations from nominal 
values for 𝜃𝜃3 and 𝜃𝜃4 as well; these errors are defined as 𝛿𝛿3 and 𝛿𝛿4. Applying Equations
(2) to (5) to the mechanism with uncertainty in positioning leads to the following 
modified equations:

ℎ1(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 cos(𝜃𝜃2 + 𝛿𝛿2) +  𝑏𝑏 cos(𝜃𝜃3 + 𝛿𝛿3) − 𝑐𝑐 cos(𝜃𝜃4 + 𝛿𝛿4) − 𝑑𝑑 = 0 (6)

ℎ2(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 sin(𝜃𝜃2 + 𝛿𝛿2) +  𝑏𝑏 sin(𝜃𝜃3 + 𝛿𝛿3) − 𝑐𝑐 sin(𝜃𝜃4 + 𝛿𝛿4) = 0 (7)

𝑃𝑃𝑥𝑥(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 cos(𝜃𝜃2 + 𝛿𝛿2) +  𝑒𝑒 cos(𝛼𝛼 + 𝜃𝜃3 + 𝛿𝛿3) (8)

𝑃𝑃𝑦𝑦(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 sin(𝜃𝜃2 + 𝛿𝛿2) +  𝑒𝑒 sin(𝛼𝛼 + 𝜃𝜃3 + 𝛿𝛿3) (9)

Applying trigonometric identities, and linearizing by invoking the small angle 
approximation, yields:

ℎ1(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (cos𝜃𝜃2 − 𝛿𝛿2 sin𝜃𝜃2) +  𝑏𝑏 (cos𝜃𝜃3 − 𝛿𝛿3 sin𝜃𝜃3) −              
𝑐𝑐 (cos𝜃𝜃4 − 𝛿𝛿4 sin 𝜃𝜃4) − 𝑑𝑑 = 0 (10)

ℎ2(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (sin𝜃𝜃2 + 𝛿𝛿2 cos 𝜃𝜃2) +  𝑏𝑏 (sin𝜃𝜃3 + 𝛿𝛿3 cos 𝜃𝜃3) −
𝑐𝑐 (sin𝜃𝜃4 + 𝛿𝛿4 cos 𝜃𝜃4) = 0 (11)

𝑃𝑃𝑥𝑥(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (cos 𝜃𝜃2 − 𝛿𝛿2 sin𝜃𝜃2) +  𝑒𝑒 cos𝛼𝛼 (cos𝜃𝜃3 − 𝛿𝛿3 sin𝜃𝜃3) −
𝑒𝑒 sin𝛼𝛼 (sin𝜃𝜃3 + 𝛿𝛿3 cos 𝜃𝜃3)                                                          (12)

𝑃𝑃𝑦𝑦(𝜃𝜃2,𝜃𝜃3,𝜃𝜃4) = 𝑎𝑎 (sin𝜃𝜃2 + 𝛿𝛿2 cos 𝜃𝜃2) +  𝑒𝑒 sin𝛼𝛼 (cos𝜃𝜃3 − 𝛿𝛿3 sin𝜃𝜃3) +
𝑒𝑒 cos𝛼𝛼 (sin𝜃𝜃3 + 𝛿𝛿3 cos 𝜃𝜃3)                                                         (13)

Isolating the error terms only in Equations (10) and (11) yields:

�−𝑎𝑎 sin 𝜃𝜃2
𝑎𝑎 cos 𝜃𝜃2

� 𝛿𝛿2 + �−𝑏𝑏 sin𝜃𝜃3 𝑐𝑐 sin𝜃𝜃4
𝑏𝑏 cos 𝜃𝜃3 −𝑐𝑐 cos 𝜃𝜃4

� �𝛿𝛿3𝛿𝛿4
� = �00� (14)

which can be rewritten:
which can be rewritten:

𝑨𝑨𝛿𝛿2 + 𝑩𝑩 �𝛿𝛿3𝛿𝛿4
� = �00� (15)

or:

�𝛿𝛿3𝛿𝛿4
� = 𝑩𝑩−1𝑨𝑨𝛿𝛿2 (16)

This relates the values of the dependent error terms 𝛿𝛿3 and 𝛿𝛿4 in terms of the 
independent error 𝛿𝛿2 , which corresponds to the position error of the driving stepper 
motor.

Similarly with Equations (13) and (14), the error terms can be isolated as:

�
Δ𝑃𝑃𝑥𝑥
Δ𝑃𝑃𝑦𝑦

� = �−𝑎𝑎 sin𝜃𝜃2
𝑎𝑎 cos 𝜃𝜃2

� 𝛿𝛿2 + �−𝑒𝑒 cos𝛼𝛼 sin𝜃𝜃3 − 𝑒𝑒 sin𝛼𝛼 cos 𝜃𝜃3 0
−𝑒𝑒 sin𝛼𝛼 sin𝜃𝜃3 + 𝑒𝑒 cos𝛼𝛼 cos 𝜃𝜃3 0� �

𝛿𝛿3
𝛿𝛿4
� (17)

where Δ𝑃𝑃𝑥𝑥 and Δ𝑃𝑃𝑦𝑦 are the position errors of the coupler point, or:

Δ𝑷𝑷 = 𝑪𝑪𝛿𝛿2 + 𝑫𝑫 �𝛿𝛿3𝛿𝛿4
� (18)

Substituting Equation (16) into Equation (18) yields:

Δ𝑷𝑷 = (𝑪𝑪 + 𝑫𝑫𝑩𝑩−1𝑨𝑨) 𝛿𝛿2 (19)

which relates the position error of the coupler point to the rotational position error of the
driving stepper motor. The matrix term  (𝑪𝑪 + 𝑫𝑫𝑩𝑩−1𝑨𝑨) , which describes how the 
rotational error in the drive angle propagates to position error in known as the sensitivity 
matrix (𝑺𝑺).  For the typical four-bar linkage described in Figure 1, this sensitivity matrix 
is:

𝑺𝑺 = �
−𝑎𝑎 sin 𝜃𝜃2 + 𝑎𝑎𝑎𝑎 sin(𝜃𝜃2−𝜃𝜃4) sin(𝛼𝛼+𝜃𝜃3)

𝑏𝑏 sin(𝜃𝜃3−𝜃𝜃4)

𝑎𝑎 cos 𝜃𝜃2 −
𝑎𝑎𝑎𝑎 sin(𝜃𝜃2−𝜃𝜃4)cos(𝛼𝛼+𝜃𝜃3)

𝑏𝑏 sin(𝜃𝜃3−𝜃𝜃4)

� (20)

The statistical variance of position error can be estimated using the sensitivity matrix 𝑺𝑺
and the statistical properties of the rotational position error 𝛿𝛿2 as follows:

𝜎𝜎𝑃𝑃𝑥𝑥
2 = �−𝑎𝑎 sin𝜃𝜃2 + 𝑎𝑎𝑎𝑎 sin(𝜃𝜃2−𝜃𝜃4) sin(𝛼𝛼+𝜃𝜃3)

𝑏𝑏 sin(𝜃𝜃3−𝜃𝜃4)
�
2
𝜎𝜎𝛿𝛿2
2 (21)

𝜎𝜎𝑃𝑃𝑦𝑦
2 = �𝑎𝑎 cos 𝜃𝜃2 −

𝑎𝑎𝑎𝑎 sin(𝜃𝜃2−𝜃𝜃4)cos(𝛼𝛼+𝜃𝜃3)
𝑏𝑏 sin(𝜃𝜃3−𝜃𝜃4)

�
2
𝜎𝜎𝛿𝛿2
2 (22)

or:

which can be rewritten:

𝑨𝑨𝛿𝛿2 + 𝑩𝑩 �𝛿𝛿3𝛿𝛿4
� = �00� (15)

or:

�𝛿𝛿3𝛿𝛿4
� = 𝑩𝑩−1𝑨𝑨𝛿𝛿2 (16)

This relates the values of the dependent error terms 𝛿𝛿3 and 𝛿𝛿4 in terms of the 
independent error 𝛿𝛿2 , which corresponds to the position error of the driving stepper 
motor.

Similarly with Equations (13) and (14), the error terms can be isolated as:

�
Δ𝑃𝑃𝑥𝑥
Δ𝑃𝑃𝑦𝑦

� = �−𝑎𝑎 sin𝜃𝜃2
𝑎𝑎 cos 𝜃𝜃2

� 𝛿𝛿2 + �−𝑒𝑒 cos𝛼𝛼 sin𝜃𝜃3 − 𝑒𝑒 sin𝛼𝛼 cos 𝜃𝜃3 0
−𝑒𝑒 sin𝛼𝛼 sin𝜃𝜃3 + 𝑒𝑒 cos𝛼𝛼 cos 𝜃𝜃3 0� �

𝛿𝛿3
𝛿𝛿4
� (17)

where Δ𝑃𝑃𝑥𝑥 and Δ𝑃𝑃𝑦𝑦 are the position errors of the coupler point, or:

Δ𝑷𝑷 = 𝑪𝑪𝛿𝛿2 + 𝑫𝑫 �𝛿𝛿3𝛿𝛿4
� (18)

Substituting Equation (16) into Equation (18) yields:

Δ𝑷𝑷 = (𝑪𝑪 + 𝑫𝑫𝑩𝑩−1𝑨𝑨) 𝛿𝛿2 (19)

which relates the position error of the coupler point to the rotational position error of the
driving stepper motor. The matrix term  (𝑪𝑪 + 𝑫𝑫𝑩𝑩−1𝑨𝑨) , which describes how the 
rotational error in the drive angle propagates to position error in known as the sensitivity 
matrix (𝑺𝑺).  For the typical four-bar linkage described in Figure 1, this sensitivity matrix 
is:

𝑺𝑺 = �
−𝑎𝑎 sin 𝜃𝜃2 + 𝑎𝑎𝑎𝑎 sin(𝜃𝜃2−𝜃𝜃4) sin(𝛼𝛼+𝜃𝜃3)

𝑏𝑏 sin(𝜃𝜃3−𝜃𝜃4)

𝑎𝑎 cos 𝜃𝜃2 −
𝑎𝑎𝑎𝑎 sin(𝜃𝜃2−𝜃𝜃4)cos(𝛼𝛼+𝜃𝜃3)

𝑏𝑏 sin(𝜃𝜃3−𝜃𝜃4)

� (20)

The statistical variance of position error can be estimated using the sensitivity matrix 𝑺𝑺
and the statistical properties of the rotational position error 𝛿𝛿2 as follows:

𝜎𝜎𝑃𝑃𝑥𝑥
2 = �−𝑎𝑎 sin𝜃𝜃2 + 𝑎𝑎𝑎𝑎 sin(𝜃𝜃2−𝜃𝜃4) sin(𝛼𝛼+𝜃𝜃3)

𝑏𝑏 sin(𝜃𝜃3−𝜃𝜃4)
�
2
𝜎𝜎𝛿𝛿2
2 (21)

𝜎𝜎𝑃𝑃𝑦𝑦
2 = �𝑎𝑎 cos 𝜃𝜃2 −

𝑎𝑎𝑎𝑎 sin(𝜃𝜃2−𝜃𝜃4)cos(𝛼𝛼+𝜃𝜃3)
𝑏𝑏 sin(𝜃𝜃3−𝜃𝜃4)

�
2
𝜎𝜎𝛿𝛿2
2 (22)

This relates the values of the dependent error terms δ3 and δ4 in terms 
of the independent error δ2, which corresponds to the position error of 
the driving stepper motor.
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Similarly with Equations (13) and (14), the error terms can be isolated 
as:

which can be rewritten:

𝑨𝑨𝛿𝛿2 + 𝑩𝑩 �𝛿𝛿3𝛿𝛿4
� = �00� (15)

or:

�𝛿𝛿3𝛿𝛿4
� = 𝑩𝑩−1𝑨𝑨𝛿𝛿2 (16)

This relates the values of the dependent error terms 𝛿𝛿3 and 𝛿𝛿4 in terms of the 
independent error 𝛿𝛿2 , which corresponds to the position error of the driving stepper 
motor.

Similarly with Equations (13) and (14), the error terms can be isolated as:

�
Δ𝑃𝑃𝑥𝑥
Δ𝑃𝑃𝑦𝑦

� = �−𝑎𝑎 sin𝜃𝜃2
𝑎𝑎 cos 𝜃𝜃2

� 𝛿𝛿2 + �−𝑒𝑒 cos𝛼𝛼 sin𝜃𝜃3 − 𝑒𝑒 sin𝛼𝛼 cos 𝜃𝜃3 0
−𝑒𝑒 sin𝛼𝛼 sin𝜃𝜃3 + 𝑒𝑒 cos𝛼𝛼 cos 𝜃𝜃3 0� �

𝛿𝛿3
𝛿𝛿4
� (17)

where Δ𝑃𝑃𝑥𝑥 and Δ𝑃𝑃𝑦𝑦 are the position errors of the coupler point, or:

Δ𝑷𝑷 = 𝑪𝑪𝛿𝛿2 + 𝑫𝑫 �𝛿𝛿3𝛿𝛿4
� (18)

Substituting Equation (16) into Equation (18) yields:

Δ𝑷𝑷 = (𝑪𝑪 + 𝑫𝑫𝑩𝑩−1𝑨𝑨) 𝛿𝛿2 (19)

which relates the position error of the coupler point to the rotational position error of the
driving stepper motor. The matrix term  (𝑪𝑪 + 𝑫𝑫𝑩𝑩−1𝑨𝑨) , which describes how the 
rotational error in the drive angle propagates to position error in known as the sensitivity 
matrix (𝑺𝑺).  For the typical four-bar linkage described in Figure 1, this sensitivity matrix 
is:

𝑺𝑺 = �
−𝑎𝑎 sin 𝜃𝜃2 + 𝑎𝑎𝑎𝑎 sin(𝜃𝜃2−𝜃𝜃4) sin(𝛼𝛼+𝜃𝜃3)

𝑏𝑏 sin(𝜃𝜃3−𝜃𝜃4)

𝑎𝑎 cos 𝜃𝜃2 −
𝑎𝑎𝑎𝑎 sin(𝜃𝜃2−𝜃𝜃4)cos(𝛼𝛼+𝜃𝜃3)

𝑏𝑏 sin(𝜃𝜃3−𝜃𝜃4)

� (20)

The statistical variance of position error can be estimated using the sensitivity matrix 𝑺𝑺
and the statistical properties of the rotational position error 𝛿𝛿2 as follows:

𝜎𝜎𝑃𝑃𝑥𝑥
2 = �−𝑎𝑎 sin𝜃𝜃2 + 𝑎𝑎𝑎𝑎 sin(𝜃𝜃2−𝜃𝜃4) sin(𝛼𝛼+𝜃𝜃3)

𝑏𝑏 sin(𝜃𝜃3−𝜃𝜃4)
�
2
𝜎𝜎𝛿𝛿2
2 (21)

𝜎𝜎𝑃𝑃𝑦𝑦
2 = �𝑎𝑎 cos 𝜃𝜃2 −

𝑎𝑎𝑎𝑎 sin(𝜃𝜃2−𝜃𝜃4)cos(𝛼𝛼+𝜃𝜃3)
𝑏𝑏 sin(𝜃𝜃3−𝜃𝜃4)

�
2
𝜎𝜎𝛿𝛿2
2 (22)

where ΔPx and ΔPy are the position errors of the coupler point, or:

which can be rewritten:

𝑨𝑨𝛿𝛿2 + 𝑩𝑩 �𝛿𝛿3𝛿𝛿4
� = �00� (15)

or:

�𝛿𝛿3𝛿𝛿4
� = 𝑩𝑩−1𝑨𝑨𝛿𝛿2 (16)

This relates the values of the dependent error terms 𝛿𝛿3 and 𝛿𝛿4 in terms of the 
independent error 𝛿𝛿2 , which corresponds to the position error of the driving stepper 
motor.

Similarly with Equations (13) and (14), the error terms can be isolated as:

�
Δ𝑃𝑃𝑥𝑥
Δ𝑃𝑃𝑦𝑦

� = �−𝑎𝑎 sin𝜃𝜃2
𝑎𝑎 cos 𝜃𝜃2

� 𝛿𝛿2 + �−𝑒𝑒 cos𝛼𝛼 sin𝜃𝜃3 − 𝑒𝑒 sin𝛼𝛼 cos 𝜃𝜃3 0
−𝑒𝑒 sin𝛼𝛼 sin𝜃𝜃3 + 𝑒𝑒 cos𝛼𝛼 cos 𝜃𝜃3 0� �

𝛿𝛿3
𝛿𝛿4
� (17)

where Δ𝑃𝑃𝑥𝑥 and Δ𝑃𝑃𝑦𝑦 are the position errors of the coupler point, or:

Δ𝑷𝑷 = 𝑪𝑪𝛿𝛿2 + 𝑫𝑫 �𝛿𝛿3𝛿𝛿4
� (18)

Substituting Equation (16) into Equation (18) yields:

Δ𝑷𝑷 = (𝑪𝑪 + 𝑫𝑫𝑩𝑩−1𝑨𝑨) 𝛿𝛿2 (19)

which relates the position error of the coupler point to the rotational position error of the
driving stepper motor. The matrix term  (𝑪𝑪 + 𝑫𝑫𝑩𝑩−1𝑨𝑨) , which describes how the 
rotational error in the drive angle propagates to position error in known as the sensitivity 
matrix (𝑺𝑺).  For the typical four-bar linkage described in Figure 1, this sensitivity matrix 
is:

𝑺𝑺 = �
−𝑎𝑎 sin 𝜃𝜃2 + 𝑎𝑎𝑎𝑎 sin(𝜃𝜃2−𝜃𝜃4) sin(𝛼𝛼+𝜃𝜃3)

𝑏𝑏 sin(𝜃𝜃3−𝜃𝜃4)

𝑎𝑎 cos 𝜃𝜃2 −
𝑎𝑎𝑎𝑎 sin(𝜃𝜃2−𝜃𝜃4)cos(𝛼𝛼+𝜃𝜃3)

𝑏𝑏 sin(𝜃𝜃3−𝜃𝜃4)

� (20)

The statistical variance of position error can be estimated using the sensitivity matrix 𝑺𝑺
and the statistical properties of the rotational position error 𝛿𝛿2 as follows:

𝜎𝜎𝑃𝑃𝑥𝑥
2 = �−𝑎𝑎 sin𝜃𝜃2 + 𝑎𝑎𝑎𝑎 sin(𝜃𝜃2−𝜃𝜃4) sin(𝛼𝛼+𝜃𝜃3)

𝑏𝑏 sin(𝜃𝜃3−𝜃𝜃4)
�
2
𝜎𝜎𝛿𝛿2
2 (21)

𝜎𝜎𝑃𝑃𝑦𝑦
2 = �𝑎𝑎 cos 𝜃𝜃2 −

𝑎𝑎𝑎𝑎 sin(𝜃𝜃2−𝜃𝜃4)cos(𝛼𝛼+𝜃𝜃3)
𝑏𝑏 sin(𝜃𝜃3−𝜃𝜃4)

�
2
𝜎𝜎𝛿𝛿2
2 (22)

Substituting Equation (16) into Equation (18) yields:

which can be rewritten:

𝑨𝑨𝑨𝑨𝛿𝛿𝛿𝛿2 + 𝑩𝑩𝑩𝑩 �𝛿𝛿𝛿𝛿3𝛿𝛿𝛿𝛿4
� = �00� (15)

or:

�𝛿𝛿𝛿𝛿3𝛿𝛿𝛿𝛿4
� = 𝑩𝑩𝑩𝑩−1𝑨𝑨𝑨𝑨𝛿𝛿𝛿𝛿2 (16)

This relates the values of the dependent error terms 𝛿𝛿𝛿𝛿3 and 𝛿𝛿𝛿𝛿4 in terms of the 
independent error 𝛿𝛿𝛿𝛿2 , which corresponds to the position error of the driving stepper 
motor.

Similarly with Equations (13) and (14), the error terms can be isolated as:

�
Δ𝑃𝑃𝑃𝑃𝑥𝑥𝑥𝑥
Δ𝑃𝑃𝑃𝑃𝑦𝑦𝑦𝑦

� = �−𝑎𝑎𝑎𝑎 sin𝜃𝜃𝜃𝜃2
𝑎𝑎𝑎𝑎 cos 𝜃𝜃𝜃𝜃2

� 𝛿𝛿𝛿𝛿2 + �−𝑒𝑒𝑒𝑒 cos𝛼𝛼𝛼𝛼 sin𝜃𝜃𝜃𝜃3 − 𝑒𝑒𝑒𝑒 sin𝛼𝛼𝛼𝛼 cos 𝜃𝜃𝜃𝜃3 0
−𝑒𝑒𝑒𝑒 sin𝛼𝛼𝛼𝛼 sin𝜃𝜃𝜃𝜃3 + 𝑒𝑒𝑒𝑒 cos𝛼𝛼𝛼𝛼 cos 𝜃𝜃𝜃𝜃3 0� �

𝛿𝛿𝛿𝛿3
𝛿𝛿𝛿𝛿4
� (17)

where Δ𝑃𝑃𝑃𝑃𝑥𝑥𝑥𝑥 and Δ𝑃𝑃𝑃𝑃𝑦𝑦𝑦𝑦 are the position errors of the coupler point, or:

Δ𝑷𝑷𝑷𝑷 = 𝑪𝑪𝑪𝑪𝛿𝛿𝛿𝛿2 + 𝑫𝑫𝑫𝑫 �𝛿𝛿𝛿𝛿3𝛿𝛿𝛿𝛿4
� (18)

Substituting Equation (16) into Equation (18) yields:

Δ𝑷𝑷𝑷𝑷 = (𝑪𝑪𝑪𝑪 + 𝑫𝑫𝑫𝑫𝑩𝑩𝑩𝑩−1𝑨𝑨𝑨𝑨) 𝛿𝛿𝛿𝛿2 (19)

which relates the position error of the coupler point to the rotational position error of the
driving stepper motor. The matrix term  (𝑪𝑪𝑪𝑪 + 𝑫𝑫𝑫𝑫𝑩𝑩𝑩𝑩−1𝑨𝑨𝑨𝑨) , which describes how the 
rotational error in the drive angle propagates to position error in known as the sensitivity 
matrix (𝑺𝑺𝑺𝑺).  For the typical four-bar linkage described in Figure 1, this sensitivity matrix 
is:

𝑺𝑺𝑺𝑺 = �
−𝑎𝑎𝑎𝑎 sin 𝜃𝜃𝜃𝜃2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 sin(𝜃𝜃𝜃𝜃2−𝜃𝜃𝜃𝜃4) sin(𝛼𝛼𝛼𝛼+𝜃𝜃𝜃𝜃3)

𝑏𝑏𝑏𝑏 sin(𝜃𝜃𝜃𝜃3−𝜃𝜃𝜃𝜃4)

𝑎𝑎𝑎𝑎 cos 𝜃𝜃𝜃𝜃2 −
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 sin(𝜃𝜃𝜃𝜃2−𝜃𝜃𝜃𝜃4)cos(𝛼𝛼𝛼𝛼+𝜃𝜃𝜃𝜃3)

𝑏𝑏𝑏𝑏 sin(𝜃𝜃𝜃𝜃3−𝜃𝜃𝜃𝜃4)

� (20)

The statistical variance of position error can be estimated using the sensitivity matrix 𝑺𝑺𝑺𝑺
and the statistical properties of the rotational position error 𝛿𝛿𝛿𝛿2 as follows:

𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃𝑥𝑥𝑥𝑥
2 = �−𝑎𝑎𝑎𝑎 sin𝜃𝜃𝜃𝜃2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 sin(𝜃𝜃𝜃𝜃2−𝜃𝜃𝜃𝜃4) sin(𝛼𝛼𝛼𝛼+𝜃𝜃𝜃𝜃3)

𝑏𝑏𝑏𝑏 sin(𝜃𝜃𝜃𝜃3−𝜃𝜃𝜃𝜃4)
�
2
𝜎𝜎𝜎𝜎𝛿𝛿𝛿𝛿2
2 (21)

𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃𝑦𝑦𝑦𝑦
2 = �𝑎𝑎𝑎𝑎 cos 𝜃𝜃𝜃𝜃2 −

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 sin(𝜃𝜃𝜃𝜃2−𝜃𝜃𝜃𝜃4)cos(𝛼𝛼𝛼𝛼+𝜃𝜃𝜃𝜃3)
𝑏𝑏𝑏𝑏 sin(𝜃𝜃𝜃𝜃3−𝜃𝜃𝜃𝜃4)

�
2
𝜎𝜎𝜎𝜎𝛿𝛿𝛿𝛿2
2 (22)

which relates the position error of the coupler point to the rotational 
position error of the driving stepper motor. The matrix term  (C+DB-1 A), 
which describes how the rotational error in the drive angle propagates 
to position error in known as the sensitivity matrix (S).  For the typical 
four-bar linkage described in Figure 1, this sensitivity matrix is:

which can be rewritten:

𝑨𝑨𝛿𝛿2 + 𝑩𝑩 �𝛿𝛿3𝛿𝛿4
� = �00� (15)

or:

�𝛿𝛿3𝛿𝛿4
� = 𝑩𝑩−1𝑨𝑨𝛿𝛿2 (16)

This relates the values of the dependent error terms 𝛿𝛿3 and 𝛿𝛿4 in terms of the 
independent error 𝛿𝛿2 , which corresponds to the position error of the driving stepper 
motor.
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The statistical variance of position error can be estimated using the sensitivity matrix 𝑺𝑺
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where where 𝜎𝜎𝑃𝑃𝑥𝑥
2 and 𝜎𝜎𝑃𝑃𝑦𝑦

2 are the variances of the coupler point position errors, and 𝜎𝜎𝛿𝛿2
2 is the 

variance of the rotational error in the drive angle. For stepper motors, 𝜎𝜎𝛿𝛿2
2 is readily 

estimated from the known properties of the motor. Stepper motors are generally rated as 
being accurate to a given percentage of the step size (typically 3% to 5% in a common 
stepper motor), yielding bidirectional tolerance bounds on stepper motor position. 
Conservatively, the rotational position error can be considered to be uniformly 
distributed over the error bounds, and the variance calculated accordingly.  

In order to validate the DLM model for error propagation, a case study was used. Using 
the geometry as defined in Figure 1, the following dimensional values were used:  
𝑎𝑎 = 40 mm, 𝑏𝑏 = 120 mm, 𝑐𝑐 = 80 mm, 𝑑𝑑 = 100 mm, 𝑒𝑒 = 50 mm, and 𝛼𝛼 = 30o . The 
driving stepper motor was assumed to have a step size of 1.8°/step, and an accuracy of 
±5%. Under the conservative assumption of a uniformly distributed stepper motor error, 
a variance of 𝜎𝜎𝛿𝛿2

2 = 8.127 × 10−7rad2 was used.

Equations (21) and (22) were used to predict position error variance as a function of the 
input angle 𝜃𝜃2 over a full revolution of the input link (in 1.8° increments). In addition, 
Monte Carlo simulations using 10,000 trials at each value of 𝜃𝜃2, and the position error 
variance was computed from these simulated values.  Figure 2 shows the path of the 
coupler for one full revolution of the crank link in both the “open” and “crossed” 
configurations.  

Figure 2. Coupler curves for open and crossed configurations (units of mm)

Figures 3 and 4 show the simulated vs. predicted values of 𝜎𝜎𝑃𝑃𝑥𝑥
2 and 𝜎𝜎𝑃𝑃𝑦𝑦

2 using the “open” 
configuration of the four-bar mechanism, and Figures 5 and 6 show the simulated vs. 
predicted values of 𝜎𝜎𝑃𝑃𝑥𝑥

2 and 𝜎𝜎𝑃𝑃𝑦𝑦
2 using the “crossed” configuration of the four-bar 

mechanism, using the known kinematic solutions (Norton, 1999). In each case, the 
DLM model accurately predicts the position error variance.
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variance calculated accordingly.  

In order to validate the DLM model for error propagation, a case study 
was used. Using the geometry as defined in Figure 1, the following 
dimensional values were used:  a=40 mm, b=120 mm, c=80 mm, d=100 
mm, e=50 mm,and α=30°. The driving stepper motor was assumed 
to have a step size of 1.8°/step, and an accuracy of ±5%. Under the 
conservative assumption of a uniformly distributed stepper motor 
error, a variance of 
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variance was computed from these simulated values.  Figure 2 shows the path of the 
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DLM model accurately predicts the position error variance.
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 was used. 

Equations (21) and (22) were used to predict position error variance as 
a function of the input angle θ2 over a full revolution of the input link 
(in 1.8° increments). In addition, Monte Carlo simulations using 10,000 
trials at each value of θ2, and the position error variance was computed 
from these simulated values.  Figure 2 shows the path of the coupler for 
one full revolution of the crank link in both the “open” and “crossed” 
configurations.  
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Figure 3. Variance of coupler x position (open configuration)

Figure 4. Variance of coupler y position (open configuration)
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Figure 4. Variance of coupler y position (open configuration)
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Figure 4. Variance of coupler y position (open configuration)
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Figure 5. Variance of coupler x position (crossed configuration)

Figure 6. Variance of coupler y position (crossed configuration)
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Figure 6. Variance of coupler y position (crossed configuration)
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3.0	 AN ENTROPY BASED APPROACH TO RELIABILITY 
OPTIMIZATION

In the previous section, it was demonstrated that the DLM method can 
be used to establish an analytic expression for position error variance 
in a stepper-driven four-bar mechanism. Consider the case where the 
four-bar mechanism is being used to precisely place the coupler point 
at a desired x-y location, with allowable position error described by 
bidirectional tolerances on the x and y components of position:

3.0 AN ENTROPY BASED APPROACH TO RELIABILITY OPTIMIZATION

In the previous section, it was demonstrated that the DLM method can be used to 
establish an analytic expression for position error variance in a stepper-driven four-bar 
mechanism. Consider the case where the four-bar mechanism is being used to precisely 
place the coupler point at a desired x-y location, with allowable position error described 
by bidirectional tolerances on the x and y components of position:

𝑃𝑃𝑥𝑥,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑃𝑃𝑥𝑥,𝑑𝑑𝑑𝑑𝑑𝑑 ± 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡 (23)

𝑃𝑃𝑦𝑦,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑃𝑃𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑 ± 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 (24)

where 𝑃𝑃𝑥𝑥,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑃𝑃𝑦𝑦,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 indicate the allowable values of position,  𝑃𝑃𝑥𝑥,𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑃𝑃𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑
indicate the nominally desired position for the coupler point, and 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 indicate 
bidirectional tolerance constraints on the nominal desired position.  

Since the position of the mechanism has been modeled probabilistically, the positioning 
problem can be interpreted from a reliability perspective; the optimal four-bar 
mechanism will maximize the probability that the coupler point falls within the 
tolerance bound place on position, thereby maximizing positioning reliability. This 
problem has been addressed for open-loop kinematic chains and robotic manipulators 
by employing an entropy formulation (Musto, 2002); under the assumption that the 
system is designed to nominally hit the desired x-y position, then the reliability of the 
positioning system can be expressed as:

𝑅𝑅 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�Δ𝑃𝑃𝑥𝑥2 ≤ 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡2 ∩ Δ𝑃𝑃𝑦𝑦2 ≤ 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡2 � (25)

where 𝑅𝑅 is the reliability of the positioning system.  In systems where the position error 
variance is known, it has been shown that minimizing an entropy measure associated 
with the position error is equivalent to optimizing a bound on system reliability; a 
lower-bound on position reliability is optimized when the following entropy-based 
objective function is minimized:

𝑉𝑉 =
𝜎𝜎𝑃𝑃𝑥𝑥
2

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡
2 + 

𝜎𝜎𝑃𝑃𝑦𝑦
2

𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡
2 (26)

This approach has been demonstrated for high degree-of-freedom systems, where the 
error variance must be determined through Monte Carlo simulation (Musto, 2002). 
However, when coupled with the DLM method for stepper-driven four-bar linkages, 
this objective function can be evaluated analytically, and used as an objective function 
for design optimization. 

Substituting the expressions from Equations (21) and (22), and eliminating the constant 
term 𝜎𝜎𝛿𝛿2

2 ,yields the following cost function for minimization:

𝑉𝑉 =
�−𝑎𝑎 sin𝜃𝜃2+

𝑎𝑎𝑎𝑎sin(𝜃𝜃2−𝜃𝜃4) sin(𝛼𝛼+𝜃𝜃3)
𝑏𝑏sin(𝜃𝜃3−𝜃𝜃4) �

2
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2 +

�𝑎𝑎 cos𝜃𝜃2−
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𝑏𝑏sin(𝜃𝜃3−𝜃𝜃4) �
2

𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡
2 (27)

where Px,allow  and Py,allow indicate the allowable values of position,  
Px,des  and Py,des indicate the nominally desired position for the coupler 
point, and xtol  and ytol indicate bidirectional tolerance constraints on the 
nominal desired position.  

Since the position of the mechanism has been modeled probabilistically, 
the positioning problem can be interpreted from a reliability perspective; 
the optimal four-bar mechanism will maximize the probability that the 
coupler point falls within the tolerance bound place on position, thereby 
maximizing positioning reliability. This problem has been addressed 
for open-loop kinematic chains and robotic manipulators by employing 
an entropy formulation (Musto, 2002); under the assumption that the 
system is designed to nominally hit the desired x-y position, then the 
reliability of the positioning system can be expressed as:
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where 𝑅𝑅 is the reliability of the positioning system.  In systems where the position error 
variance is known, it has been shown that minimizing an entropy measure associated 
with the position error is equivalent to optimizing a bound on system reliability; a 
lower-bound on position reliability is optimized when the following entropy-based 
objective function is minimized:
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This approach has been demonstrated for high degree-of-freedom systems, where the 
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where R is the reliability of the positioning system.  In systems where 
the position error variance is known, it has been shown that minimizing 
an entropy measure associated with the position error is equivalent to 
optimizing a bound on system reliability; a lower-bound on position 
reliability is optimized when the following entropy-based objective 
function is minimized:

3.0 AN ENTROPY BASED APPROACH TO RELIABILITY OPTIMIZATION

In the previous section, it was demonstrated that the DLM method can be used to 
establish an analytic expression for position error variance in a stepper-driven four-bar 
mechanism. Consider the case where the four-bar mechanism is being used to precisely 
place the coupler point at a desired x-y location, with allowable position error described 
by bidirectional tolerances on the x and y components of position:
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tolerance bound place on position, thereby maximizing positioning reliability. This 
problem has been addressed for open-loop kinematic chains and robotic manipulators 
by employing an entropy formulation (Musto, 2002); under the assumption that the 
system is designed to nominally hit the desired x-y position, then the reliability of the 
positioning system can be expressed as:
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with the position error is equivalent to optimizing a bound on system reliability; a 
lower-bound on position reliability is optimized when the following entropy-based 
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This approach has been demonstrated for high degree-of-freedom systems, where the 
error variance must be determined through Monte Carlo simulation (Musto, 2002). 
However, when coupled with the DLM method for stepper-driven four-bar linkages, 
this objective function can be evaluated analytically, and used as an objective function 
for design optimization. 

Substituting the expressions from Equations (21) and (22), and eliminating the constant 
term 𝜎𝜎𝛿𝛿2

2 ,yields the following cost function for minimization:
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This approach has been demonstrated for high degree-of-freedom 
systems, where the error variance must be determined through Monte 
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Carlo simulation (Musto, 2002). However, when coupled with the DLM 
method for stepper-driven four-bar linkages, this objective function can 
be evaluated analytically, and used as an objective function for design 
optimization. 

Substituting the expressions from Equations (21) and (22), and 
eliminating the constant term 
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𝑃𝑃𝑦𝑦,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑃𝑃𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑 ± 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 (24)

where 𝑃𝑃𝑥𝑥,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑃𝑃𝑦𝑦,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 indicate the allowable values of position,  𝑃𝑃𝑥𝑥,𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑃𝑃𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑
indicate the nominally desired position for the coupler point, and 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 indicate 
bidirectional tolerance constraints on the nominal desired position.  

Since the position of the mechanism has been modeled probabilistically, the positioning 
problem can be interpreted from a reliability perspective; the optimal four-bar 
mechanism will maximize the probability that the coupler point falls within the 
tolerance bound place on position, thereby maximizing positioning reliability. This 
problem has been addressed for open-loop kinematic chains and robotic manipulators 
by employing an entropy formulation (Musto, 2002); under the assumption that the 
system is designed to nominally hit the desired x-y position, then the reliability of the 
positioning system can be expressed as:

𝑅𝑅 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�Δ𝑃𝑃𝑥𝑥2 ≤ 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡2 ∩ Δ𝑃𝑃𝑦𝑦2 ≤ 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡2 � (25)

where 𝑅𝑅 is the reliability of the positioning system.  In systems where the position error 
variance is known, it has been shown that minimizing an entropy measure associated 
with the position error is equivalent to optimizing a bound on system reliability; a 
lower-bound on position reliability is optimized when the following entropy-based 
objective function is minimized:

𝑉𝑉 =
𝜎𝜎𝑃𝑃𝑥𝑥
2

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡
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2

𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡
2 (26)

This approach has been demonstrated for high degree-of-freedom systems, where the 
error variance must be determined through Monte Carlo simulation (Musto, 2002). 
However, when coupled with the DLM method for stepper-driven four-bar linkages, 
this objective function can be evaluated analytically, and used as an objective function 
for design optimization. 

Substituting the expressions from Equations (21) and (22), and eliminating the constant 
term 𝜎𝜎𝛿𝛿2

2 ,yields the following cost function for minimization:

𝑉𝑉 =
�−𝑎𝑎 sin𝜃𝜃2+
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2 (27)
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In the previous section, it was demonstrated that the DLM method can be used to 
establish an analytic expression for position error variance in a stepper-driven four-bar 
mechanism. Consider the case where the four-bar mechanism is being used to precisely 
place the coupler point at a desired x-y location, with allowable position error described 
by bidirectional tolerances on the x and y components of position:

𝑃𝑃𝑥𝑥,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑃𝑃𝑥𝑥,𝑑𝑑𝑑𝑑𝑑𝑑 ± 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡 (23)

𝑃𝑃𝑦𝑦,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑃𝑃𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑 ± 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 (24)

where 𝑃𝑃𝑥𝑥,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑃𝑃𝑦𝑦,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 indicate the allowable values of position,  𝑃𝑃𝑥𝑥,𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑃𝑃𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑
indicate the nominally desired position for the coupler point, and 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 indicate 
bidirectional tolerance constraints on the nominal desired position.  
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problem can be interpreted from a reliability perspective; the optimal four-bar 
mechanism will maximize the probability that the coupler point falls within the 
tolerance bound place on position, thereby maximizing positioning reliability. This 
problem has been addressed for open-loop kinematic chains and robotic manipulators 
by employing an entropy formulation (Musto, 2002); under the assumption that the 
system is designed to nominally hit the desired x-y position, then the reliability of the 
positioning system can be expressed as:
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variance is known, it has been shown that minimizing an entropy measure associated 
with the position error is equivalent to optimizing a bound on system reliability; a 
lower-bound on position reliability is optimized when the following entropy-based 
objective function is minimized:

𝑉𝑉 =
𝜎𝜎𝑃𝑃𝑥𝑥
2

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡
2 + 
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This approach has been demonstrated for high degree-of-freedom systems, where the 
error variance must be determined through Monte Carlo simulation (Musto, 2002). 
However, when coupled with the DLM method for stepper-driven four-bar linkages, 
this objective function can be evaluated analytically, and used as an objective function 
for design optimization. 

Substituting the expressions from Equations (21) and (22), and eliminating the constant 
term 𝜎𝜎𝛿𝛿2

2 ,yields the following cost function for minimization:

𝑉𝑉 =
�−𝑎𝑎 sin𝜃𝜃2+

𝑎𝑎𝑎𝑎sin(𝜃𝜃2−𝜃𝜃4) sin(𝛼𝛼+𝜃𝜃3)
𝑏𝑏sin(𝜃𝜃3−𝜃𝜃4) �

2

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡
2 +

�𝑎𝑎 cos𝜃𝜃2−
𝑎𝑎𝑎𝑎sin(𝜃𝜃2−𝜃𝜃4) cos(𝛼𝛼+𝜃𝜃3)
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2

𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡
2 (27)

This will be used in the formulation of the mechanism design problem 
as a multivariable constrained optimization problem.

4.0	 AN OPTIMAL DESIGN FORMULATION

In the previous sections, an analytic expression for the position 
variance of a planar four-bar mechanism was determined, and a cost 
function analogous to system reliability was introduced. In this section, 
the design of step-driven four-bar mechanisms will be formulated as a 
constrained optimization problem; the goal will be to design the four-
bar mechanism to optimize the reliability of the positioning system 
in the presence of uncertainty in the actuator (θ2); in essence, the goal 
of the design will be to minimize the propagation of actuator error to 
coupler point positioning error.

In this formulation, it is assumed that all of the system uncertainty is due 
to the actuator error δ2, and that the stepper resolution of the actuator is 
known. Geometric errors in the link length, pivot point placement, etc. 
are not considered; this is due to the fact that for a given mechanism, 
these errors are fixed, and the effect of these errors can be removed 
by calibration; only the actuator angle remains as a random parameter 
once the system is built and calibrated. Design variables include the 
length of the four links (a, b, c, d), the coupler length (e), the actuator 
angle (θ2) and the coupler angle (α). The angle of the ground link d 
with respect to the x-axis could also be included as a design variable; 
this would in essence have the effect of modifying the relative values of 
xtol  and ytol. In this development, the ground link will be assumed to be 
coincident with the x-axis.

With these assumptions, the multivariable constrained optimization 
problem can be formulated as:
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Find: a,b,c,d,e,θ2,α

To minimize:

This will be used in the formulation of the mechanism design problem as a 
multivariable constrained optimization problem.

4.0 AN OPTIMAL DESIGN FORMULATION

In the previous sections, an analytic expression for the position variance of a planar 
four-bar mechanism was determined, and a cost function analogous to system reliability 
was introduced. In this section, the design of step-driven four-bar mechanisms will be 
formulated as a constrained optimization problem; the goal will be to design the four-
bar mechanism to optimize the reliability of the positioning system in the presence of 
uncertainty in the actuator (𝜃𝜃2); in essence, the goal of the design will be to minimize 
the propagation of actuator error to coupler point positioning error.

In this formulation, it is assumed that all of the system uncertainty is due to the actuator 
error 𝛿𝛿2, and that the stepper resolution of the actuator is known. Geometric errors in the 
link length, pivot point placement, etc. are not considered; this is due to the fact that for 
a given mechanism, these errors are fixed, and the effect of these errors can be removed 
by calibration; only the actuator angle remains as a random parameter once the system 
is built and calibrated. Design variables include the length of the four links (a, b, c, d), 
the coupler length (e), the actuator angle (𝜃𝜃2) and the coupler angle (α). The angle of 
the ground link d with respect to the x-axis could also be included as a design variable; 
this would in essence have the effect of modifying the relative values of 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡  and 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡. In 
this development, the ground link will be assumed to be coincident with the x-axis.

With these assumptions, the multivariable constrained optimization problem can be 
formulated as:

Find: 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝜃𝜃2,𝛼𝛼

To minimize:

𝑓𝑓(𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝜃𝜃2,𝛼𝛼) =
�−𝑎𝑎 sin𝜃𝜃2+

𝑎𝑎𝑎𝑎 sin(𝜃𝜃2−𝜃𝜃4) sin(𝛼𝛼+𝜃𝜃3)
𝑏𝑏sin(𝜃𝜃3−𝜃𝜃4) �

2

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡
2 +

�𝑎𝑎 cos𝜃𝜃2−
𝑎𝑎𝑎𝑎sin(𝜃𝜃2−𝜃𝜃4)cos(𝛼𝛼+𝜃𝜃3)

𝑏𝑏sin(𝜃𝜃3−𝜃𝜃4) �
2

𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡
2  (28)

Subject to:

𝑃𝑃𝑥𝑥,𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑎𝑎 cos 𝜃𝜃2 +  𝑒𝑒 cos(𝛼𝛼 + 𝜃𝜃3) = 0 (29)

                               𝑃𝑃𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑎𝑎 sin𝜃𝜃2 +  𝑒𝑒 sin(𝛼𝛼 + 𝜃𝜃3) = 0 (30)

              𝑎𝑎 cos 𝜃𝜃2 +  𝑏𝑏 cos 𝜃𝜃3 − 𝑐𝑐 cos 𝜃𝜃4 − 𝑑𝑑 = 0 (31)

𝑎𝑎 sin𝜃𝜃2 +  𝑏𝑏 sin𝜃𝜃3 − 𝑐𝑐 sin𝜃𝜃4 = 0 (32)

Equations (29) and (30) ensure that the mechanism will reach the nominal desired 
position; Equations (31) and (32) enforce the kinematic loop equations. It should be 
noted that the link lengths a, b, c, and d must be nonnegative values, which introduces 
additional constraints.  
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This will be used in the formulation of the mechanism design problem as a 
multivariable constrained optimization problem.
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𝑎𝑎 sin𝜃𝜃2 +  𝑏𝑏 sin𝜃𝜃3 − 𝑐𝑐 sin𝜃𝜃4 = 0 (32)

Equations (29) and (30) ensure that the mechanism will reach the nominal desired 
position; Equations (31) and (32) enforce the kinematic loop equations. It should be 
noted that the link lengths a, b, c, and d must be nonnegative values, which introduces 
additional constraints.  

Equations (29) and (30) ensure that the mechanism will reach the 
nominal desired position; Equations (31) and (32) enforce the kinematic 
loop equations. It should be noted that the link lengths a, b, c, and d 
must be nonnegative values, which introduces additional constraints.  

In the practical implementation of this method, additional constraints 
are likely.  For example:

	
•	 Nonzero lower bounds may be placed on link lengths, to 

allow for practical geometric constraints such as bearing/pin 
sizes, etc.

•	 Upper bounds may be placed on link lengths, limiting the 
overall size envelope for the mechanism

•	 Constraints may be placed on the relative lengths of the 
links in the mechanism, allowing for practical construction 
and scale of the mechanism

•	 A constraint may be added on the orientation a specific link, 
if orientation is important to the positioning task (e.g. the 
angle of the coupler link may be specified)

•	 If desired, a constraint to enforce the Grashof condition and 
allow for full rotation of the drive link can be formulated 
(shortest link + longest link ≤ sum of remaining links)

Once formulated, a suitable computational algorithm can be used to 
solve the multivariable constrained optimization problem, and yield 
a mechanism design that is optimal from a reliability standpoint.  The 
addition of practical constraints will vary according to the usage of 
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the linkage, but should be readily incorporated with an appropriate 
computational algorithm.  This will be demonstrated in the next section 
in a mechanism design case study.

5.0	 CASE STUDY

The DLM model and entropy-based optimization algorithm will be 
demonstrated in a case study in this section. A four-bar linkage (as 
shown in Figure 1), with a pivot point placed at the origin, will be the 
assumed geometry for the case study. The mechanism will be designed 
to achieve the following positioning task:

•	 Px,des=120 mm, with an allowable tolerance of ± 1 mm
•	 Py,des=180 mm, with an allowable tolerance of ± .1 mm

In addition to the constraints inherent to the optimization problem 
described in the previous section, the following additional practical 
constraints have been placed on the mechanism design:

•	 The crank link length a will be at least 60% of the length of 
the other links in the kinematic chain

•	 The coupler link length e will be no longer than any other 
link in the kinematic chain

•	 The orientation of the coupler link (the quantity α+θ3) will 
be specified to be between 70° and 80°

•	 The relative lengths of the kinematic links a, b, c, and d will 
be such that the mechanism meets Grashof’s condition, with 
a being the shortest link in the kinematic chain

With these constraints in place, a graphical solution which achieved 
the nominal desired position within the kinematic constraints was 
formulated. The graphical solution, which was used as an initial 
condition for optimization, is summarized in Table 1.

Table 1.  Initial condition (graphical solution)

With these constraints in place, a graphical solution which achieved the nominal desired 
position within the kinematic constraints was formulated. The graphical solution, which 
was used as an initial condition for optimization, is summarized in Table 1.

Table 1. Initial condition (graphical solution)

This graphical solution, which was obtained by traditional trial-and-error graphical 
methods, was evaluated using the objective function in Equation (28); the value of the 
objective function for this initial design was found to be V=2.34x105; additionally, use 
of Equations (21) and (22) yielded standard deviations on positioning error to be 
𝜎𝜎𝑃𝑃𝑥𝑥 = .102 mm and 𝜎𝜎𝑃𝑃𝑦𝑦 = .043 mm.

With this as an initial solution, the optimization formulation offered in the previous 
section, in addition to the additional practical constraints, was used to improve the 
design. For the computational algorithm, the Solver tool in Microsoft Excel 2010 was 
used.  Specifically, the GRG Nonlinear optimization algorithm was utilized. After 
performing the optimization, the mechanism design detailed in Table 2 resulted. For 
comparison, the initial conditions and values of objective function and positioning error 
estimates are shown as well.

Table 2. Mechanism design

Parameter Initial condition Final design
a 91.0 mm 69.0 mm
b 150.0 mm 115.0 mm
c 147.7 mm 163.9 mm
d 150 mm 163.9 mm
e 150 mm 163.9 mm
α 30° -13°
θ2 22° 22°
θ3 46° 83°
θ4 75° 121°
V 2.34x105 2.59x104

𝜎𝜎𝑃𝑃𝑥𝑥 .102 mm .109 mm
𝜎𝜎𝑃𝑃𝑦𝑦 .043 mm .010 mm

In order to validate the method, the design problem was reposed, with a change in the 
tolerance constraint on 𝑃𝑃𝑥𝑥,𝑑𝑑𝑑𝑑𝑑𝑑 for 1 mm in the previous case study to 0.01 mm in the 
revised case study. Starting from the same initial conditions, the mechanism detailed in 
Table 3 resulted.

Parameter Initial condition
a 91.0 mm
b 150.0 mm
c 147.7 mm
d 150 mm
e 150 mm
α 30°
θ2 22°
θ3 46°
θ4 75°
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This graphical solution, which was obtained by traditional trial-and-
error graphical methods, was evaluated using the objective function in 
Equation (28); the value of the objective function for this initial design 
was found to be V=2.34x105; additionally, use of Equations (21) and (22) 
yielded standard deviations on positioning error to be σPx =.102 mm 
and σPy =.043 mm.

With this as an initial solution, the optimization formulation offered in 
the previous section, in addition to the additional practical constraints, 
was used to improve the design. For the computational algorithm, the 
Solver tool in Microsoft Excel 2010 was used.  Specifically, the GRG 
Nonlinear optimization algorithm was utilized. After performing the 
optimization, the mechanism design detailed in Table 2 resulted. For 
comparison, the initial conditions and values of objective function and 
positioning error estimates are shown as well.

Table 2.  Mechanism design

With these constraints in place, a graphical solution which achieved the nominal desired 
position within the kinematic constraints was formulated. The graphical solution, which 
was used as an initial condition for optimization, is summarized in Table 1.

Table 1. Initial condition (graphical solution)

This graphical solution, which was obtained by traditional trial-and-error graphical 
methods, was evaluated using the objective function in Equation (28); the value of the 
objective function for this initial design was found to be V=2.34x105; additionally, use 
of Equations (21) and (22) yielded standard deviations on positioning error to be 
𝜎𝜎𝑃𝑃𝑥𝑥 = .102 mm and 𝜎𝜎𝑃𝑃𝑦𝑦 = .043 mm.

With this as an initial solution, the optimization formulation offered in the previous 
section, in addition to the additional practical constraints, was used to improve the 
design. For the computational algorithm, the Solver tool in Microsoft Excel 2010 was 
used.  Specifically, the GRG Nonlinear optimization algorithm was utilized. After 
performing the optimization, the mechanism design detailed in Table 2 resulted. For 
comparison, the initial conditions and values of objective function and positioning error 
estimates are shown as well.

Table 2. Mechanism design

Parameter Initial condition Final design
a 91.0 mm 69.0 mm
b 150.0 mm 115.0 mm
c 147.7 mm 163.9 mm
d 150 mm 163.9 mm
e 150 mm 163.9 mm
α 30° -13°
θ2 22° 22°
θ3 46° 83°
θ4 75° 121°
V 2.34x105 2.59x104

𝜎𝜎𝑃𝑃𝑥𝑥 .102 mm .109 mm
𝜎𝜎𝑃𝑃𝑦𝑦 .043 mm .010 mm

In order to validate the method, the design problem was reposed, with a change in the 
tolerance constraint on 𝑃𝑃𝑥𝑥,𝑑𝑑𝑑𝑑𝑑𝑑 for 1 mm in the previous case study to 0.01 mm in the 
revised case study. Starting from the same initial conditions, the mechanism detailed in 
Table 3 resulted.

Parameter Initial condition
a 91.0 mm
b 150.0 mm
c 147.7 mm
d 150 mm
e 150 mm
α 30°
θ2 22°
θ3 46°
θ4 75°

In order to validate the method, the design problem was reposed, with 
a change in the tolerance constraint on Px,des for 1 mm in the previous 
case study to 0.01 mm in the revised case study. Starting from the same 
initial conditions, the mechanism detailed in Table 3 resulted.
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Table 3. Mechanism design with Px,des=1 mm, Py,des=0.01 mmTable 3. Mechanism design with 𝑃𝑃𝑥𝑥,𝑑𝑑𝑑𝑑𝑑𝑑=1 mm, 𝑃𝑃𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑=0.01 mm

Parameter Initial condition Final design
a 91.0 mm 72.2 mm
b 150.0 mm 159.1 mm
c 147.7 mm 120.5 mm
d 150 mm 120.6 mm
e 150 mm 159.1 mm
α 30° 57°
θ2 22° 25°
θ3 46° 13°
θ4 75° 34°
V 2.21x107 2.96x105

𝜎𝜎𝑃𝑃𝑥𝑥 .102 mm 0.0002 mm
𝜎𝜎𝑃𝑃𝑦𝑦 .043 mm .049 mm

In each case, the optimization algorithm achieved a reduction in the objective function; 
in each case, the mechanism configuration achieved objective function minimization by 
reducing error in the direction that was held to the tighter tolerance constraint.

A third case study was performed, with the tolerance set to 0.1 mm for both 𝑃𝑃𝑥𝑥,𝑑𝑑𝑑𝑑𝑑𝑑 and 
𝑃𝑃𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑. In this case, with the error in x and y directions weighted equally in the objective 
function, the results shown in Table 3 were obtained.

Table 4. Mechanism Design with 𝑃𝑃𝑥𝑥,𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑 = 0.1 mm

Parameter Initial condition Final design
A 91.0 mm 84.6 mm
B 150.0 mm 141.0mm
C 147.7 mm 143.9 mm
D 150 mm 144.0 mm
E 150 mm 144.0 mm
α 30° 27°
θ2 22° 31°
θ3 46° 43°
θ4 75° 78°
V 1.49x106 4.86 x105

𝜎𝜎𝑃𝑃𝑥𝑥 .102 mm .054 mm
𝜎𝜎𝑃𝑃𝑦𝑦 .043 mm .032 mm

In each of the three case studies, the following can be shown:

• The optimized results, when substituted into Equations (4) and (5), yield the 
nominal desired position of 𝑃𝑃𝑥𝑥,𝑑𝑑𝑑𝑑𝑑𝑑 =120 mm, 𝑃𝑃𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑 =180 mm. This is the 
consequence of the kinematic constraints in the optimization algorithm.

• In each case, the optimized mechanism results in an improved design (as 
indicated by the improvement in the objective function) over the nominal 
graphical solution. This indicates more accurate positioning of the mechanism in 
the presence of drive angle error.

In each case, the optimization algorithm achieved a reduction in the 
objective function; in each case, the mechanism configuration achieved 
objective function minimization by reducing error in the direction that 
was held to the tighter tolerance constraint.

A third case study was performed, with the tolerance set to 0.1 mm for 
both Px,des and Py,des. In this case, with the error in x and y directions 
weighted equally in the objective function, the results shown in Table 
3 were obtained.

Table 4. Mechanism Design with Px,des=Py,des=0.1 mm

Table 3. Mechanism design with 𝑃𝑃𝑥𝑥,𝑑𝑑𝑑𝑑𝑑𝑑=1 mm, 𝑃𝑃𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑=0.01 mm

Parameter Initial condition Final design
a 91.0 mm 72.2 mm
b 150.0 mm 159.1 mm
c 147.7 mm 120.5 mm
d 150 mm 120.6 mm
e 150 mm 159.1 mm
α 30° 57°
θ2 22° 25°
θ3 46° 13°
θ4 75° 34°
V 2.21x107 2.96x105

𝜎𝜎𝑃𝑃𝑥𝑥 .102 mm 0.0002 mm
𝜎𝜎𝑃𝑃𝑦𝑦 .043 mm .049 mm

In each case, the optimization algorithm achieved a reduction in the objective function; 
in each case, the mechanism configuration achieved objective function minimization by 
reducing error in the direction that was held to the tighter tolerance constraint.

A third case study was performed, with the tolerance set to 0.1 mm for both 𝑃𝑃𝑥𝑥,𝑑𝑑𝑑𝑑𝑑𝑑 and 
𝑃𝑃𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑. In this case, with the error in x and y directions weighted equally in the objective 
function, the results shown in Table 3 were obtained.

Table 4. Mechanism Design with 𝑃𝑃𝑥𝑥,𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑 = 0.1 mm

Parameter Initial condition Final design
A 91.0 mm 84.6 mm
B 150.0 mm 141.0mm
C 147.7 mm 143.9 mm
D 150 mm 144.0 mm
E 150 mm 144.0 mm
α 30° 27°
θ2 22° 31°
θ3 46° 43°
θ4 75° 78°
V 1.49x106 4.86 x105

𝜎𝜎𝑃𝑃𝑥𝑥 .102 mm .054 mm
𝜎𝜎𝑃𝑃𝑦𝑦 .043 mm .032 mm

In each of the three case studies, the following can be shown:

• The optimized results, when substituted into Equations (4) and (5), yield the 
nominal desired position of 𝑃𝑃𝑥𝑥,𝑑𝑑𝑑𝑑𝑑𝑑 =120 mm, 𝑃𝑃𝑦𝑦,𝑑𝑑𝑑𝑑𝑑𝑑 =180 mm. This is the 
consequence of the kinematic constraints in the optimization algorithm.

• In each case, the optimized mechanism results in an improved design (as 
indicated by the improvement in the objective function) over the nominal 
graphical solution. This indicates more accurate positioning of the mechanism in 
the presence of drive angle error.

In each of the three case studies, the following can be shown:

•	 The optimized results, when substituted into Equations 
(4) and (5), yield the nominal desired position of Px,des=120 
mm, Py,des=180 mm. This is the consequence of the kinematic 
constraints in the optimization algorithm.

•	 In each case, the optimized mechanism results in an 
improved design (as indicated by the improvement in the 
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objective function) over the nominal graphical solution. This 
indicates more accurate positioning of the mechanism in the 
presence of drive angle error.

These case studies indicate that more the DLM method can be used to 
optimize the positioning reliability of stepper-driven mechanisms. 

6.0	 CONCLUSIONS 

In this paper, the DLM method has been extended to use in the 
optimization of stepper-driven mechanisms. The method was shown 
to accurately predict drive error propagation, through comparison to 
Monte Carlo simulation. When coupled with entropy-based system 
reliability optimization methods, it was shown that optimal mechansims 
could be synthesized in response to various positioning constraints.  

In this new method, only drive angle error was considered. This 
method could be augmented to include additional uncertainties in 
design, such as tolerances on link lengths, clearance in bearings, and 
planar misalignments. Work is underway in this area.
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