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ABSTRACT  

Dynamic modeling of nanobeam under stretching and two-parameter 

foundations effects result in nonlinear equations that are very difficult to 

find exact analytical solutions. In this study, variational iteration method 

is used to develop approximate analytical solutions to nonlinear vibration 

analysis of nanobeam under the effects of stretching, Winkler and 

Pasternak foundations. The governing equation of motion for the 

nanobeam was derived based on Euler-Bernoulli beam theory. The 

developed approximate analytical solutions for the governing equation are 

used to study the effects of the model parameters on the dynamic 

behaviour of the nanobeam. The results show that increase in the beam 

length decreases the natural frequency of vibration while the diameter of 

the nanobeam increases as the natural frequency increases. As the spring 

constant increases, the nonlinear frequency ratio decreases. At a high 

stiffness media, the carbon nanobeam behavior can be modeled as a linear 

system whose geometric nonlinearity becomes negligible. The nonlinear 

frequency of nanobeam increases with increase in the vibration amplitude 

and the discrepancy between the linear and nonlinear responses tends to 

increase as time evolves. Also, it is found that as the foundation parameter 

increases, the nonlinear vibration frequency ratio increases and the 

difference between the nonlinear and linear frequency becomes 

pronounced. These analytical solutions can serve as a starting point for a 

better understanding of the relationship between the physical quantities of 

the problems as they provide clearer insights to understanding the 

problems in comparison with numerical methods. 
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1.0 INTRODUCTION 

 

The study of dynamic behaviour of nanobeam is an important research area due to small 

scale of carbon nanobeam (CNB) and their important applications in sensitive devices. The 

vibration behaviour and properties of the CNB have been investigated in the past few 

decades. Many of the past researches are based on linear vibration analysis of the CNB. 

However, owing to the small scale of carbon nanobeams, the linear assumptions cannot 

provide an accurate prediction and analysis of the vibration of the CNB. Furthermore, the 

assumption that carbon nanobeam rests on linear foundations shows apparently that the 

linear foundation is not very precise approximation for the tiny instruments, and so the 

obtained past estimations either by numerical or analytical approaches cannot accurately 

predict the dynamic behaviour of the CNB. Therefore, in order to increase the level of 

prediction or accurately predict the dynamic behaviour of CNB, it is very essential to 

develop mathematical model for the CNB, which contains geometrical nonlinearity and 

nonlinear foundations. Modeling the nanobeam under such considerations results in 

nonlinear dynamic equations which are difficult to solve exactly and analytically. However, 

in many cases under different scenarios, recourse is always made to numerical methods to 

solve the nonlinear or approximate analytical methods are often applied in which their 

accuracies largely depend on the number of terms included in the solutions. In some cases, 

where decomposition procedures into spatial and temporal parts are carried out, the 

resulting nonlinear equation for the temporal part comes in form of Duffing equation. 

Application of exact analytical methods to the nonlinear equation is limited as many of the 

cases where the exact solutions are generated are not practicable and the solutions hardly 

provide an all-encompassing understanding of the nature of systems in response to 

parameters affecting nonlinearity. However, the classical way for finding analytical 

solution either exact or approximated is obviously still very important since it serves as an 

accurate benchmark for numerical solutions. Although, different approximate analytical 

methods such as Perturbation method (regular or singular perturbation method), homotopy 

perturbation method (HPM), Homotopy analysis method (HAM), variational iterative 

method (VIM), differential transformation method (DTM), Harmonic balancing method, 

Adomian decomposition method etc. Zhou (1986); Liao, (1992), (1995); Chen and Ho. 

(1996), He, (1998), Momani, (2004), El-Shahed, (2008);   Liao and Tan, (2007), Fernandez 

(2009); Rafiepour et al. (2014).  These approximate analytical methods solve nonlinear 

differential equations without linearization, without discretization or approximation of the 

derivatives. However, most of the approximate methods give accurate predictions only 

when the nonlinearities are weak and they fail to predict accurate solutions for strong 

nonlinear models. Also, when they are routinely implemented, they can sometimes lead to 

erroneous results (Sobamowo, 2016). Additionally, some of them require more 

mathematical manipulations and are not applicable to all problems, and thus suffer a lack of 

generality.  For example,  DTM proved to be more effective than most of the other 
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approximate analytical solutions as it does not require many computations as carried out in 

ADM, HAM, HPM, and VIM. However, the transformation of the nonlinear equations and 

the development of equivalent recurrence equations for the nonlinear equations using DTM 

proved somehow difficult in some nonlinear system such as in rational Duffing oscillator, 

irrational nonlinear Duffing oscillator, finite extensibility nonlinear oscillator. Therefore, 

the quest for comparatively simple, flexible, generic and high accurate analytical solutions 

continues. Moreover, the determination of Adomian polynomials as carried out in ADM, 

the restrictions of HPM to weakly nonlinear problems, the lack of rigorous theories or 

proper guidance for choosing initial approximation, auxiliary linear operators, auxiliary 

functions, and auxiliary parameters in HAM, operational restrictions to small domains and 

the search for a particular value for the auxiliary parameter that will satisfy second the 

boundary condition which leads to additional computational cost in using DTM, HAM, 

ADM. In the class of the approximate analytical methods, the relative simplicity and 

flexibility of VIM makes it a desirable and promising method for the analysis of nonlinear 

problems. The method has been applied to solve many nonlinear problems (He, 1998a, 

1998b, 1999a, 1999b, 2000, 2006, 2007a, 2007b, 2011, 2012a, 2012b; 2012c; Rafei et al. 

,2007, Marinca and Herisanu, 2006; Ganji, et al., 2008; Hesameddini and Latifizadeh, 

2009; Wu, 2012). Therefore, in this work, variation iteration method (VIM) is applied to 

develop approximate analytical solutions for nonlinear vibration analysis of single-walled 

carbon nanobeam under the effects of stretching and Winkler and Pasternak foundations. 

Variational iteration method has shown to be the one of the most effective, accurate, 

flexible, convenient approximate analytical methods for large class of weakly and strongly 

nonlinear equations. It is a user-friendly method with reduced size of calculation, direct and 

straightforward iteration and generates solution with a rapid rate of convergent and without 

any restrictive assumptions or transformations. In VIM, the initial solution can be freely 

chosen with some unknown parameters and the unknown parameters in the initial solution 

can be achieved easily. Although, there is a rigour of step-by-step integrations coupled with 

the problem of determination of Lagrange multiplier in application of VIM, with few 

number of iteration, even, in some cases, a single iteration of VIM can converge to correct 

solutions or results. The analytical solutions as developed in this work can serve as a 

starting point for a better understanding of the relationship between the physical quantities 

of the problems as it provides continuous physical insights into the problem than pure 

numerical or computation methods. 

 

2.0 PROBLEM FORMULATION  

 

Consider a single-walled carbon nanobeam under the stretching effects and resting on linear 

and nonlinear elastic foundations (Pasternak, linear and nonlinear Winkler foundations) as 

shown in Figure 1. Assuming the nanobeam to have homogeneous mass density and cross-
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sectional area along its length. Also, the nanobeam material is assumed to be isotropic and 

the mechanical properties of the foundation are uniform along the length of the nanobeam. 

Based on the assumptions, the governing differential equation are developed as 

 

 

 
 

 

 

Figure 1 A nanobeam resting on Winkler and Pasternak foundations 
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subject to the following initial and the boundary conditions (simply-supported nanobeam) 

 

( ,0) ow x w ( ,0) 0w x &                                                       (2) 

(0, ) ''(0, ) 0w t w t  ( , ) ''( , ) 0w L t w L t   

 

The derivation of the governing equation is shown in the Appendix. 

 

Using the Galerkin’s decomposition procedure to separate the spatial and temporal parts of 

the lateral displacement functions as  

 

1

( , ) ( ) ( )
N

n n

n

w x t x q t


                                                   (3) 

 

where ( )q t the generalized coordinate of the system and ( )x is a trial/comparison function 

that will satisfy both the geometric and natural boundary conditions. 

 

For the simply-supported nanobeam considered in this work 

 

( ) nx sin x                                                           (4) 
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where 

0 n

n
sin L

L


    n=1, 2, 3, 4….N 

Therefore, Eq. (3) becomes 

2

1

( , ) ( )n n

n

w x t q t sin x


                                                        (5) 

On substituting Eq. (5) into Eq. (1) and apply orthogonal principle of the mode shapes, we 

arrived at  

2 3 2

1 1 1 1 1 1 3 1 2 0q q q q q q       && &                                              (6a) 

2 3 2

2 2 2 2 2 2 4 2 1 0q q q q q q       && &                                             (6b)   

while for the undamped nanobeam, we have  

2 3 2

1 1 1 1 1 3 1 2 0q q q q q     &&
                                               

(8a) 

2 3 2

2 2 2 2 2 4 2 1 0q q q q q     &&
                                               

(8b)   

where 
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The initial conditions are  

 

    1 0 1(0) (0) 0q X q &                                                                                                                                  

    2 0 2(0) (0) 0q Y q &                (9) 
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3.0  METHOD OF SOLUTION: VARIATIONAL ITERATION METHOD 

 

 

In finding direct and practical solutions to the problem, variational iteration method is 

applied to the simultaneous nonlinear equations. As pointed previously, the variational 

iteration method is an approximate analytical method for solving differential equations. The 

basic definitions of the method are as follows 

 

The differential equation to be solved can be written in the form 

 
( )Lu Nu g t                                                                       (10) 

 

where L is a linear operator, N is a nonlinear operator and g(t) is an inhomogeneous term in 

the differential equation. 

 

Following VIM procedure, we have a correction functional as  

 

 1

0

( ) ( ) ( ) ( ) ( )

t

n n nu t u t Lu Nu g t d        %

                                    

(11) 

 

 is a general Lagrange multiplier, the subscript n is the nth approximation and u% is a 

restricted variation 0u %  

 

Applying the above VIM procedures to Eqs. (7a) and (7b), the following iteration 

formulations are constructed, letting 
1 2u q v q   

 

 
2

2 3 2

1 1 1 1 32

1 0

1
t

n
n n n n n n

d u
u u sin t u u u v d

d
     

 


 
      

 


              

(12a) 

 
2

2 3 2

1 2 2 2 42

2 0

1
t

n
n n n n n n

d v
v v sin t v v v u d

d
     

 


 
      

 


             

(12b) 

 

In order to find the periodic solution of Eq. (12), we assume an initial approximation for 

zero-order deformation as  

 

1 2( ) ( )o ou acos t v bcos t   
                                    

(13) 

 

For the first iteration, i.e. n=0 

 

 
2

2 3 20
1 0 1 1 0 1 0 3 0 02

1 0

1
t

d u
u u sin t u u u v d

d
     

 

 
      

 


                  

(14a) 
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 
2

2 3 20
1 0 2 2 0 2 0 4 0 02

2 0

1
t

d v
v v sin t v v v u d

d
     

 

 
      

 
                     (14b) 

 

 

On substituting the corresponding terms in Eq. (13) into Eq. (14a) and (14b), we have 

 

   
     

   

2 2 3 3

1 1 1 1 1

1 1 1
2 2

1 0 3 1 1

1
t a cos a cos

u acos sin t d
ab cos cos

   
   

   

     
     

    


         

(15a) 

 

   
     

   

2 2 3 3
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1 1 2
2 2
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1
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

          

(15b) 

 

It should be pointed out that 
1 and 

2 are the nonlinear natural frequencies.  

After mathematical calculations and simplifications of Eq. (15a) and (15b), we have  

 

     
 

   

 

 

 
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1 1

42 2 2

3 1

4 9

2 2 22

4 2 2
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a
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a
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 

  



 



  

  
    
            

      
  
   

     

            
        

  

   3
1 11

2 2 2 2

1 1 1 1

3 3

4 9

cos t cos ta

 

 
 
 

 

  
  

              
(16a) 
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     
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(16b) 

 

 

We should recall from Eq. (5),  
2
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( , ) ( ) ( ) ( )n n
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Therefore,  
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 
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 
 
  

  
 

                                         

 

                                                                                                                                                     

(18) 

 



Analysis of Nonlinear Dynamic Behaviour of Nanobeam Resting on Winkler and Pasternak 

Foundations using Variational Iteration Method 

ISSN: 2180-1053         Vol. 9 No.2       July – December 2017                         29 

 

4.0  DETERMINATION OF NATURAL FREQUENCY OF THE VIBRATION 

 

In order to find the natural frequency of the vibration, we have to eliminate the secular 

term. After eliminating the secular term in u and v, we have  

 

     

2 2

3 3

2 22 2 2 2
1 1 1 2 1 1 2 1

3

1

2 2 2 2

1 1 1 1

1 1

42 2 2

3 1
0

4 9

ab ab
a

a

 

  



 

 
   
          
    

 
   

   

                                            
(19a) 

And  

     
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4 9

ba ba
b

b
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

 

 
   
          
    

 
   

                                            
(19b) 

 

 

It should be noted that from Eq. (3), Eq. (5) and the initial conditions in Eq. (9) that 

 

1 2( ,0) o o ow x u sin x v sin x w                                          (20) 

 

  Which can be written as  

 

1 1 2 2( ) ( ) oacos t sin x bcos t sin x w                                         (21) 

 

For the general case of , 0a b  , Eq. (19a) and Eq. (19b) implicitly generate the main 

frequencies of the symmetric and un-symmetric modes of oscillations. However, for the 

special case of 0, 0a b  , after simplifications, we arrived at  

 

   4 2 2 2 2 2 2

1 1 1 1 1 1 19 10 7 0a a                                        (22) 

 

On solving Eq. (22), we arrived at  
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     
2

2 2 2 2 2 2 2

1 1 1 1 1 1 1

1

10 7 10 7 36

18

a a a          
 

                    
(23) 

 

A further simplification gives 

 

 2 2 4 2 2 2 4

1 1 1 1 1 1

1

10 7 64 104 49

18

a a a        
 

                               
(24) 

 

And  
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         

                

(25a) 

 

1 0v 
                                                               

(25b) 

 

Therefore,  

 

 
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w x t a cos t sin x
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

   

        
         

           

 

                                                                                                                                                     

(26) 

 

where 

1 1( )oa w sec t cosec x   

 

Also, for the special case of 0, 0a b  , after simplifications, we arrived at  

 

   4 2 2 2 2 2 2

2 2 2 2 2 2 29 10 7 0b b          
                           

(27) 

 

Which gives  

 

     
2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2

10 7 10 7 36

18

b b b          
 

                     
(28) 

 

A further simplification gives 
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 2 2 4 2 2 2 4

2 2 2 2 2 2

2

10 7 64 104 49

18

b b b        
 

                          
(29) 

 

And  

1 0u                                                      (30a) 
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         

          
      (30b) 

 

 

 

Therefore 
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(31) 

where 

 

2 2( )ob w sec t cosec x   

 

Also, it can easily be seen that as the nonlinear term tends to zero, the frequency ratio of the 

nonlinear frequency to the linear frequency, 1,2

1,2


tends to 1. 

1,2,3,4

1,2

0
1,2

1lim
 


                                                                                                                             

(32) 

 

Also, as the amplitudes a and b tend to zero, the frequency ratio of the nonlinear frequency 

to the linear frequency, 1,2

1,2


tends to 1. 

1,2

, 0
1,2

1
a b
lim




                                                                                                                          

(33) 

 

For very large values of the amplitudes a, b, we have 
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1,2

,
1,2

a b
lim




                                                                                                                         

(34) 

 

    Table: Parameters used for the simulation 

    S/N       Parameter                                              Symbol       Values used 

1. Modulus of elasticity                                     E            1-1.2×10
12  

Pa 

2. Density of the nanobeam                               ρ             1.2-2.3 ×10
3 

kg/m
3
 

3. Winkler foundation constant,                        k1                  0-10
6 

N/m
2
 

4. Pasternak linear foundation constant,           kp                  0-10
-5 

N/m
2
 

5. Pasternak nonlinear foundation constant      k3                  0-10
15

N/m
2
 

6. Length of the nanobeam
 
                               L             10-100 nm 

7. Diameter of the nanobeam                            d              0.5- 6 nm 

 

5.0  RESULTS AND DISCUSSIONS 

The first-five normalized mode shapes of the simple-simple beam are shown in Figure 2. 

Also, the figure shows the deflections of the beam along the beams’ span at five different 

buckled and mode shapes. From the first mode shape, the highest deflection occurs at the 

mid-span of the beam due to the symmetrical nature of the boundary conditions of the 

simply-simply support beam. 
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Figure 3.  Variation of nanotube length on natural frequency under simple-simple supports 

 
 

Figure 4.  Variation of nanotube length on natural frequency 
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Figure 5.  Effects of Winkler foundation parameter on natural frequency 

 

Figure 3 and 4 show the effects of nanobeam length and diameter on the normalized natural 

frequencies of the beam, respectively. The increase in the beam length decreases the natural 

frequency of vibration while as the diameter of the nanobeam increases, the natural 

frequency increases. The observations are in good agreements with the established results 

in literature.  Figure 5 is associated with the variation of the nonlinear frequency ratios of 

the CNB with spring constant with spring constant of the foundation/surrounding medium. 

From the figure, it could be seen that with the increase of the spring constant, the nonlinear 

frequency ratio decreases. It is observed that by increasing the spring constant of the 

surrounding medium, the nonlinear frequencies get close to the linear frequencies so that 

nonlinearity becomes less evident for the spring constants of large enough i.e. the influence 

of nonlinearity is more prominent for low stiffness of elastic media. However, for high 

stiffness media, nonlinear vibration frequencies are very close to linear ones. This 

establishes that at a high stiffness media, the CNB behavior can be modeled as a linear 

system whose geometric nonlinearity becomes negligible.  Also, the variation of nonlinear 

frequency with the non-dimensional amplitude for CNB is depicted in the figure. In 

contrast to linear systems, the nonlinear frequency ratio is strongly dependent on amplitude 

so that the larger the amplitude, the more pronounced the discrepancy between the linear 

and nonlinear frequencies becomes. This mean that the nonlinear frequency of nanobeam 

increases with increase in the vibration amplitude. Also, it was found that the discrepancy 

between the linear and nonlinear responses tends to increase as time evolves. Figure 6 

depicts that as the foundation parameter increases, the nonlinear vibration frequency ratio 
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increases and the difference between the nonlinear and linear frequency becomes 

pronounced 

 

Figure 6. Effects of foundation parameter on natural frequency 
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.  

Figure 7. Effects of foundation parameter on the midpoint displacement 

 
Figure 8. Effects of foundation parameter on midpoint displacement 
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Effects of foundation parameter on the midpoint deflection time history are illustrated in 

Figure 7 and 8 . Figure 7 displays the midpoint deflection time history for the nonlinear 

analysis of carbon nanobeam when kp=0.01 while Figure 8 presents the midpoint deflection 

time history for the nonlinear analysis of carbon nanobeam when kp = 0.03 

 

6.0 CONCLUSIONS 

In this work, nonlinear vibration analysis of nanobeam has been studied under the effects of 

stretching and Winkler and Pasternak foundations using variational iteration method.  The 

increase in the beam length decreases the natural frequency of vibration while as the 

diameter of the nanobeam increases, the natural frequency increase. The increase of the 

spring constant, the nonlinear frequency ratio decreases. It was established that at a high 

stiffness media, the CNB behavior can be modeled as a linear system whose geometric 

nonlinearity becomes negligible. The nonlinear frequency of nanobeam increases with 

increase in the vibration amplitude and the discrepancy between the linear and nonlinear 

responses tends to increase when time evolved. As the foundation parameter increases, the 

nonlinear vibration frequency ratio increases and the difference between the nonlinear and 

linear frequency becomes pronounced. These analytical solutions can serve as a starting 

point for a better understanding of the relationship between the physical quantities in the 

problems as it provides clearer insights to understanding the problems in comparison with 

numerical methods. 
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NOMENCLATURE 

 

A   Area of the structure 

E   Young Modulus of Elasticity 

I    moment of area 

k1, k2, k3  foundation constants 

L   length of the nanobeam 

mp mass of the nanobeam 

N  axial/Longitudinal force 

t   time 

( )u t generalized coordinate of the system 

w  transverse displacement/deflection 

x  axial coordinate 

σv  tangential moment accommodation coefficient 

( )x trial/comparison function 

 

APPENDIX 

Using Euler-Bernoulli theory,the governing equation of motion as derived as follows. 

The bending moment for the Euler-Bernoulli beam is given as                                                                                                 
 

( , ) xx

A

M x t z dA 
                                                                                                                                        

(A1)

 



Journal of Mechanical Engineering and Technology 

 

ISSN: 2180-1053         Vol. 9 No.2       July – December 2017                         40 

 

where A, z, σxx is the cross sectional area of the nanotube, distance from the neutral axis 

and the axial stress on the nanotube, respectively
 

It should be noted that  

xx xxE 

                                                                                                                                                       
(A2) 

ɛxx is the axial strain of the nanotube 

On substituting Eq. (A1) into Eq. (A2), we have 

 

( , ) xx

A

M x t zE dA 
                                                                                                                                      

(A3) 

Following von Karman strain, we have  
2

2xx

w
z

x



 

                                                                                                                                                                    
(A4)

 
Where wis the displacement of the nanotube 

On substituting Eq. (A4) into Eq. (A3), we have  

2
2

2
( , )

A

w
M x t E z dA

x


 

 
                                                                                                                                         

(A5)
 

But the second moment of area, 

2

A

I z dA 
                                                                                                                                                         

(A6) 

Therefore,  

2

2
( , )

w
M x t EI

x


 

                                                                                                                                                         
(A7)

 
By incorporating von Karman’s nonlinearity, the internal shear force on the structural cross 

section must satisfy themoment equilibrium relation 
 

( , ) ( , )
M w

V x t N x t
x x

 
 
                                                                                                                                  

(A8)
 

It should be pointed out that the internal membrane force, N is constant along the beam as  
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0 ( , ) ( )
N

N x t N t
x


  

                                                                                                                        
(A9) 

Therefore, Eq. (A9) becomes 

 

( , ) ( )
M w

V x t N t
x x

 
 
                                                                                                                             

(A10) 

Differentiating Eq. (A10) with respect to spatial variable x considering the absence of 

external axial load on the beam  

 
2 2

2 2
( )

M V w
N t

x x x

  
 

                                                                                                                                  
(A11) 

Using Newton’s law, the governing equation of motion for the free vibration of the 

nanotube can be expressed as 
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V w w w
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x t t x


   
    

                                                                                                   
(A12) 

 

Substituting Eq. (A12) into Eq. (A11), we have 
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     

                                                                                  
(A13) 

 

For the immovable supports, the internal membrane force is given as  
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(A14) 

 

Therefore, Eq. (A13) can be expressed 
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(A15) 
Where k1, k3 and kp are the Pasternak, linear and nonlinear Winkler foundation constants 

 

From Equ. (A7), we have  
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2 4

2 4

M w
EI

x x

 
 

 
                                                                                                                                                   

(A16) 

 

If we substitute Eq. (A16) into Eq. (A15), we obtained the governing equation as motion 

for the nanotube as 
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(A17) 

 

 


