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ABSTRACT 
 

In this paper, thermal performance study and optimum design analysis of 

straight fin with variable thermal conductivity are carried out using double 

decomposition method. The developed heat transfer models are used to 

analyze the thermal performance, establish the optimum thermal design 

parameters and also, investigate the effects of thermo-geometric parameters 

and thermal conductivity (non-linear) parameters on the temperature 

distribution, heat transfer and thermal performance of the longitudinal 

rectangular fin. From the results, it is established that the fin temperature 

distribution, the total heat transfer, the fin effectiveness, and the fin 

efficiency are significantly affected by the thermo-geometric and thermal 

parameters of the fin. Also, it is established that the optimum fin length 

increases as the non-linear thermal conductivity term, increases. Therefore, 

the operational parameters must be carefully chosen to ensure that the fin 

retains its primary purpose of removing heat from the primary surface.  The 

results obtained in this analysis provides platform for improvement in the 

design of fin in heat transfer equipment. 

 
KEYWORDS: Performance analysis; Convective Optimal design; Longitudinal Fin; Double decomposition 

method; Temperature-dependent thermal conductivity. 

 

1.0 INTRODUCTION  

 

High-performance heat transfer components with progressively small weights, volume and 

costs are continuously demanded in large numbers of thermal systems.  Consequently, fins 

are widely employed in the design and construction of various types of heat-transfer 

equipment and components such as air conditioning, refrigeration, superheaters, 

automobile, power plants, heat exchangers, convectional furnaces, economizers, gas 

turbines, chemical processing equipment, oil carrying pipelines, computer processors, 

electrical chips etc. The extended surfaces are used to increase the rate of heat transfer 
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between the primary surface and the fin. In practice, various types of fins with different 

geometries are used, but due to simplicity of its design and ease of construction and 

manufacturing process, the rectangular fins are widely used. Also, for ordinary fins 

problem, the thermal properties of the fin thermal conductivity is assumed to be constant, 

but if large temperature difference exists within the fin, typically, between tip and the base 

of the fin (such as heat pipe, space radiator etc.), the thermal conductivity is temperature-

dependent.  These facts attest that for many engineering applications, the thermal 

conductivity is temperature-dependent. Therefore, while analyzing the fin under such 

situations, effects of the temperature-dependent thermal properties must be taken into 

consideration. In carrying out such analysis, the thermal conductivity may be modelled for 

such and other many engineering applications by power law and by linear dependency on 

temperature (Khani & Aziz, 2010; Ndlovu & Moitsheki, 2013). Such dependency of 

thermal conductivity renders the problem non-linear and difficult to solve exactly. Over the 

past few decades, the solution of the governing non-linear differential equations has been 

constructed using different techniques. Aziz and Enamul-Huq (1973) applied regular 

perturbation expansion to study a pure convection fin with temperature dependent thermal 

conductivity. Aziz (1977) extended the previous analysis to include a uniform internal heat 

generation in the fin. Few years later, Campo and Spaulding (1999) applied method of 

successive approximation to predict the thermal behaviour of uniform circumferential fins.  

 

Chiu and Chen (2002) and Arslanturk (2005) adopted the Adomian decomposition Method 

(ADM) to obtain the temperature distribution in a pure convection fin with variable thermal 

conductivity. The same problem was also solved by Ganji (2006) with the aid of the 

homotopy perturbation method originally proposed by He (1999). Chowdhury and Hashim 

(2008) applied the Adomian decomposition method to evaluate the temperature distribution 

of straight rectangular fin with temperature dependent surface flux for all possible types of 

heat transfer. In the following year, Rajabi (2007) employed Homotopy perturbation 

method (HPM) to calculate the efficiency of straight fins with temperature-dependent 

thermal conductivity. A year later, Mustapha (2008) adopted Homotopy analysis method 

(HAM) to find the efficiency of straight fins with temperature-dependent thermal 

conductivity. Also, Coskun and Atay (2007) utilized variational iteration method (VIM) for 

the analysis of convective straight and radial fins with temperature-dependent thermal 

conductivity while Languri et al. (2008) applied both variation iteration and Homotopy 

perturbation methods for the evaluation of efficiency of straight fins with temperature-

dependent thermal conductivity. Coskun and Atay (2008) applied variational iteration 

method to analyse the efficiency of convective straight fins with temperature-dependent 

thermal conductivity. In the same year, Atay and Coskum (2008) employed variation 

iteration and finite element methods to carry out comparative analysis of power-law-fin 

type problems. Domairry and Fazeli (2009) used Homotopy analysis method to determine 

the efficiency of straight fins with temperature-dependent thermal conductivity.   

 

Chowdhury et al.(2009) investigated a rectangular fin with power law surface heat flux and 

made a comparative assessment of results predicted by HAM, HPM and ADM. Khani et al. 

(2009) used Adomian decomposition method (ADM) to provide series solution to fin 

problem with a temperature-dependent thermal conductivity. Moitsheki et al. (2010) 
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applied the Lie symmetry analysis to provide exact solutions of the fin problem with a 

power-law temperature-dependent thermal conductivity.  Also, in the same year, Hosseini 

et al. (2012) applied homotopy analysis method to provide approximate but accurate 

solution of heat transfer in fin with temperature-dependent internal heat generation and 

thermal conductivity. To the best of the authors’ knowledge, very few studies were actually 

directed to the analysis of heat transfer in fins with temperature-dependent thermal 

properties while the study of fin with temperature-dependent internal heat generation, 

thermal conductivity and heat transfer coefficient are very limited or scarcely carried out in 

literature. Furthermore, differential transform method (DTM) solves the differential 

equations without linearization, discretization or no approximation, linearization restrictive 

assumptions or perturbation, complexity of expansion of derivatives and computation of 

derivatives symbolically. This method was applied by Joneidi et al. (2009), Moradi and 

Ahmadikia (2010) as well as Moradi (2010) presented analytical solution for fin with 

temperature dependent thermal coefficient.  

 

The method was also used by Mosayebidorcheh et al. (2014), Ghasemi et al. (2014), Sandri 

et al. (2012), Ganji and Dogonchi (2014) also applied the DTM to solve the fin problem but 

the search for an auxiliary value that will satisfy the second boundary condition 

necessitated the use of Maple software and such results in additional computational costs 

and efforts in the generation of solution to the problem. This drawback is not only peculiar 

to DTM, other approximate analytical methods such as HPM, HAM, ADM and VIM also 

required additional computational cost, time and efforts for the determination of auxiliary 

parameters which could lead to tedious and very complicated work to do. Also, DTM only 

provides acceptable approximation for small range i.e. it does not exhibit a good 

approximation in large domain. This is because a boundary condition is satisfied via the 

method, and the remaining unsatisfied boundary condition plays no roles in the final 

results. This deficiency limits the efficiency and the applications of DTM over wide range 

of problems. HPM, HAM, ADM and VIM often involved complex mathematical analysis 

leading to analytic expression involving a large number terms and when such methods are 

routinely implemented, they can sometimes lead to erroneous results (Fernandez, 2009) and 

(Aziz and Bouaziz, 2011). In practice, approximate analytical solutions with large number 

of terms are not convenient for use by designers and engineers. Inevitably, cost effective 

and accurate expressions are required to analyse the fin. In order to meet this demand, 

Adomian and Rach (1993) modified the Adomian decomposition method and introduced 

the double decomposition method (DDM).  

 

Yang et al. (2008, 2010) solved the periodic base temperature in convective longitudinal 

fins using DDM, while Chiu and Chen (2003) applied the DDM to analyze convective-

radiative fins.The method was found to have more advantages than the Adomian 

decomposition method, including faster convergence,reduced calculations, higher accuracy 

andprovision of a direct scheme for solving the non-linear problem without the need of 

linearization and iteration and most importantly, it gives an explicit form of solution to non-

linear problem.It solves non-linear problems without linearization, perturbation, closure 

approximations, or discretization methods that could result in massive numerical 
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computations. Therefore, in this present work, double decomposition method is applied to 

analyze thermal performance and optimum thermal design of convective straight fin with 

temperature-dependent thermal conductivity. The DMM is computationally convenient, 

provides analytic, direct scheme, verifiable solutions not requiring perturbation, 

linearization, or discretization and resulting massive computation. It gives faster 

convergence, reduced calculations, higher accuracy than ADM and more importantly, it 

gives an explicit form of solution to non-linear problem.   Also, Golberg (1999) has shown 

that ADM does not converge in general, in particular, when the method is applied to linear 

operator equations. Furthermore, it was shown that Adomian’s decomposition method is 

equivalent to Picard iteration method, and therefore it might diverge. From the previous 

studies and analysis, it was revealed that the DDM provides a very powerful, novel and 

accurate approximate analytical solution procedure that is applicable to a wide variety of 

linear and non-linear problems and thus makes it unnecessary to search for an auxiliary 

value that will satisfy second the boundary condition as in the case of HPM, HAM, ADM 

and VIM, and without searching for variational formulations in order to apply the finite 

element method for the problems and the difficulties associated with proper construction of 

the approximating functions for arbitrary domains or geometry of interest as in Galerkin 

weighted residual method (GWRM), least square method (LSM) and collocation method 

(CM) are overcome. Although, the method presents its own difficulty in determining the 

Adomian polynomials, Am, the resulting solutions from the method are more physically 

realistic. It would be desirable to find easier ways of generating the Adomian polynomials 

and to study their properties to reduce the computational effort. From the present analysis, 

the results obtained by the method for solving the problem under investigation are 

compared with the exact solution for the linear problem and also with the numerical 

solution for the non-linear case and very good agreements were established. 

 

 

2.0 PROBLEM FORMULATION 

 

Consider a straight fin of temperature-dependent thermal conductivity k(T), length L and 

thickness δ that is exposed on both faces to a convective environment at temperature T and 

with heat transfer co-efficient h shown in Figure1, assuming that the heat flow in the fin 

and its temperatures remain constant with time, the temperature of the medium surrounding 

the fin is uniform, the fin base temperature is uniform., there is no contact resistance where 

the base of the fin joins the prime surface, also the fin thickness is small compared with its 

width and length, so that temperature gradients acrossthe fin thickness and heat transfer 

from the edges of the fin may be neglected. The dimension x pertains to the length 

coordinatewhich has its origin at the tip of the finand has a positive orientation from the fin 

tip to the fin base.  Following the model assumptions, the governing differential equation 

for the problem is shown in Equation (1). 

 

                                                      

( ) ( ) 0
c

d dT h
k T P T T

dx dx A


 
   

                                    (1)                                              
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Figure 1.  Schematic of the longitudinal straight fin geometry  

 

The boundary conditions are 

 

                                                                    

,

0, 0

bx b T T

dT
x

dx

 

                                                   (2) 

                                                                                                                                                                                

For many engineering applications, the thermal conductivity and the coefficient of heat 

transfer are temperature-dependent. Therefore, the temperature-dependent thermal 

properties and internal heat generation are given by 

 

                                                                 
  [1 ( )]ak T k T T   

                                      (3)                                                                                                                            
 

Substituting Equation (3) into Equation (1), we have 

 

                                                  

( )
[1 ( )] 0a

c

hP T Td dT
k T T

dx dx A
 



 
    

                         (4)                                                                                                

 

Introducing the following dimensionless parameters into Equation (4); 

 
2

2, , , , ( )b

b a c a

T Tx k PhL
X K M T T

b T T k A k
  






     

                                 (5)

 

 

One arrives at the dimensionless governing differential Equation (4) and the boundary 

conditions 

  

                                                               

2(1 ) 0
d d

M
dX dX


 

 
   

                                 (6)                                                                                                                     
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Equation (6) could be written in expanded form as  

 

                                                             

22 2
2

2 2
0

d d d
M

dX dX dX

  
  

 
    

                      (7)                                                                                                      

 

 

where the boundary conditions are 

 

                                                                       

1, 1

0, 0

X

d
X

dX





 

 
                                           (8)                                                                                                                                       

 

 

3.0 METHOD OF SOLUTION: DOUBLE DECOMPOSITION METHOD 

 

The nonlinearity in the governing Equation (7) makes it very difficult to generate a closed 

form solution for Equation (7). Therefore, recourse has to be made to either approximation 

analytical methods, semi-numerical methods or numerical methods of solution. In this 

work, an approximate analytical method of solution, double decomposition method is used. 

It makes the calculation accuracy much higher than the Adomian decomposition and lowers 

the computational load. The double decomposition method uses the same operator as the 

Adomian decomposition method, but decomposes the first undefined parameters. To do 

this, the zero-order decomposition formula is set into the boundary conditions and then 

evaluates the undefined parameters. The procedure of the method is described as follows: 

 

The general nonlinear equation is in the form 

 

                                                                 
Lu Nu Ru g                                                  (9)                                                                                                                                       

 

The linear terms are decomposed into L + R, with L taken as the highest order derivative 

which is easily invertible and R as the remainder of the linear operator of less order than L. 

where g is the system input or the source term and u is the system output, Nu represents the 

nonlinear terms, which is assumed to be analytic. L-1 is regarded as the inverse operator of L 

and is defined by a definite integration from 0 to x, i.e. 

 

                                                                

1

0
[L ]( ) ( )

x

f x f v dv                                           (10)                                                                                                                              
 

 

If L is a second-order operator, then L-1 is a two ford indefinite integral i.e.  L-1 could be 

expressed as 

 

                                                              

1

1 0
[L ]( ) ( )

x x

f x f v dvdv                                       (11)                                                                                                       
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Applying the inverse operator L-1 to the both sides of Equation (9), and using the given 

conditions, the resulting equation could be written as 

 

                                                              
1 1( )u x L Ru L Nu                                          (12)                                                                                                                        

 

Where 1( ) xx L g     and λx represents the term arising from integrating the source term 

g(x). 

 

The Adomian methods decomposes the solution u(x) into a series  

 

                                                                       0

m

m

u u




                                                     (13)                                                                                                                                                           

 

and the nonlinear term into a series  

 

                                                                     0

m

m

Nu A




                                                    (14)                                                                                                                                                         

 

where Am’s are Adomian’s polynomials of u0 ,u1, . . ., um and are obtained for the 

nonlinearity  

Nu = f(u)from the recursive formula 

 

00 0

1 1
[ ( )] 0,1,2,3,...

! !

m m
i

m im m
i

d d
A fu f y m

m d m d
 

 
 



 

    
      

    
                   (15) 

 

where ζ is a grouping parameter of convenience. 

 

Using the double decomposition, the integral term λxcould be further decompose as  

 

                                                                   
,

0

x x m

m

 




                                                      (16)                                                                                                                                                   

 

Substituting Eqs. (13), (14) and (16) into Equation (12), we have 

 

1 1 1

,m

0 0 0 0

m x m m

m m m m

u L g L R u L A
   

  

   

                                      (17) 

 

Assuming that   
, , 1,x m o m ma xa   .The constants of integration

0, 1,m ma and a can be found 

from the boundary conditions 
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Therefore, from the established recursive relation in Equation (17), one can write the 

double decompositions solution as 

 
1

0 0,0 1,0u a xa L g    

 
1 1

1 0,1 1,1 0 0u a xa L Ru L A      

 
1 1

2 0,2 1,2 1 1u a xa L Ru L A      

 
1 1

3 0,3 1,3 2 2u a xa L Ru L A      

 
1 1

4 0,4 1,4 3 3u a xa L Ru L A      

. 

. 

. 
1 1

0,n 1,n 1 1n n nu a xa L Ru L A 

      

                                                                                                                                                   

(18) 

 

While the solution obtained by decomposition is generally an infinite series, an (n+1) terms 

approximation φm to θ usually serves as the practical solution. This could be written as  

 

1 0 1 2 3

0

... 1n m n

m

u u u u u u n






                         (19)       

Such that 1Lim n
n

 


  

 

3.1  The Fin temperature distribution 

 

From the Adomian decomposition analysis, the linear operator is defined as  

                                                                      
X

d
L

dX


                                                      (20)                                                                                                                                           
 

Substituting Equation (20) into Equation (7), we have 

                                                                    

22
2

2X

d d
L M

dX dX

 
   

 
    

                    (21)                                                                                                  

 

Equation (21) could also be written as  

 

                                                                     
2

XL M NA NB     
                             (22)                                                                                                                        

 

where the nonlinear terms 



Thermal Performance and Optimum Design Analysis of Fin with Variable Thermal Conductivity 

Using Double Decomposition Method 

 

ISSN: 2180-1053         Vol. 9 No.1       January – June 2017                         9 
 

 

                                                                            

2

2
0

m

m

d
NA A

dX








                                      (23a) 

                                                                           

2

0

m

m

d
NB B

dX

 



 
  
 


                                      (23b)                                                                                                                              

 

Using Equation (15) the Ai’s and Bi’s are expressed as 

 
2

0
0 0 2

d
A

dX


  

 
2 2

0 1
1 1 02 2

d d
A

dX dX

 
    

 
2 2 2

0 1 2
2 2 1 02 2 2

d d d
A

dX dX dX

  
      

 
2 22 2

0 31 2
3 3 2 1 02 2 2 2

d dd d
A

dX dX dX dX

  
        

 

 
2 22 2 2

0 31 2 4
4 4 3 2 1 02 2 2 2 2

d dd d d
A

dX dX dX dX dX

   
          

. 

. 

. 

 
2 2 22 2

0 31 2
1 2 3 02 2 2 2 2

... m
m m m m m

d d dd d
A

dX dX dX dX dX

   
           

                                                                        
                                                                                                                                                                    

(24)
 

 

 

and 

 
2

0
0

d
B

dX

 
  
 

 

 

0 1
1 2

d d
B

dX dX

 
  
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2

01 2
2 2

dd d
B

dX dX dX

  
  
   

 

0 31 2
3 2 2

d dd d
B

dX dX dX dX

  
   

 

 
2

3 02 1 4
4 2 2

d dd d d
B

dX dX dX dX dX

    
   
 

 

 

. 

. 

. 

                                                                                                                                                     

(25) 

If we operate
1

XL
 on both sides of Equation (22), we obtained 

 

                                                     
1 2 1 1 1

X X X X XL L M L L NA L NB        
                         (26)                                                                                                      

 

which gives 

 

                                                    
2 1 1 1

0 X X XM L L NA L NB         
                             (27)                                                                                                          

 

 

where the inverse operator                        
1

1 0
L ( ) ( )

X X

dXdX •  •   

The value of the first term can be determined as 

 

                                                  0 0,0 1,0a xa                                                                    (28)                                                                                                                          

where the constants 
0,0 1,0a and a can be found from the boundary conditions in Equation 

(8). 

 

                                                
2 1 1 1

1 0,1 1,1 0 0 0X X Xa xa M L L NA L NB           

 

                                                
2 1 1 1

2 0,2 1,2 1 1 1X X Xa xa M L L NA L NB         
                                                                                         

 

 

                                               
2 1 1 1

3 0,3 1,3 2 2 2X X Xa xa M L L NA L NB         
                 (29)

 

 

Generally, the recursive relationship in Equation (30) can be used to determine the iterates 

 

                                             
2 1 1 1

1 0,m 1 1,m 1m X m X m X ma xa M L L NA L NB     

               (30)                                                                       
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From Eqs. (28) and (29), the first four iterations are given as 

 

                                                                     0 1   

 
2 2 2

1
2 2

M X M
    

 
4 2 4 4 4 2 2 2

2

5

24 2 24 4 2

M M M X M X M X 
       

 
6 6 6 4 6 6 4 4 4 2

3

4 2 4 2 2 2 2 2 2 2 2

7 5 13 3

720 48 360 24 24 4

5 5

48 48 2 2 2 2

M X M X M M X M M X

M X M M X M M X M

 


   

     

     

 

 
. 

.                            

. 

                                                                                                                                                 

(31) 

 

 Summing up the iterates, gives 

 
1

0 1 2 3 1

0

...
m

m m m

m

      






      
                   (32)

 

 

Therefore, the components of θ are determined and are written as m-terms approximation 

such that Lim m
m

 


  

 

4.0 FIN PARAMETERS FOR THERMAL PERFORMANCE INDICATIONS 

 

The performance indication parameters for fin includes heat transfer rate at the base of the 

fin, the total heat flux from the fin, the efficiency and the effectiveness of the fin. In this 

section, each thermal performance indication parameter is analyzed as follows. 

 

4.1  Heat flux of the Fin 

 

The fin base heat flux is given by 
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( )bn c

dT
q A k T

dx


                                                        (33)

 

 

The dimensionless heat transfer rate at the base of the fin (X=1) is obtained as 

 

(1 )
( )

bn
b

a c b

q L d
q

k A T T dX






  


                                 (34)

 

 

The total heat flux of the fin is given by 

 

)( bc

b

T
TThA

q
q


                                                       (35) 

 

Substituting Equation (34) and introducing the dimensionless parameters in Equation (5) 

into Equation (35), gives  

 

dX

d

BidX

d

h

k

Bi
qT





)1(

1)(1
                                 (36)                                                                                                          

 

4.2  Fin efficiency 

 

The amount of heat dissipated from the entire fin is found by using Newton’s law of 

cooling as 

 
1

0

( )fq Ph T T dX 
                                                        (37)

 

 

The maximum heat dissipated is obtained if the fin base temperature is kept throughout the 

fin 

 

max ( )bq PhL T T                                                            (38) 

 

Fin efficiency is defined as the ratio of the fin heat transfer rate to the rate that would be if 

the entire fin were at the base temperature and is given by 

 

0

max

( )

( )

L

f

b

Ph T T dx
q

q PhL T T








 



                                              (39) 

 

Therefore, the fin efficiency in dimensionless variables is given by 
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1

0

(X)dX  
                                                                (40)

 

It is very important to point out that the thermo-geometric parameter or the fin performance 

factor, M could be written in terms of Biot number, Bi and the aspect ratio, ar as shown in 

Equation (41). 

 
22 2 2

2 2

2

(2 ) 2 2
2

( )

b b b b
r

c a a a a

Ph L L h L h L h L
M Bia

A k L k k k

 

  

 
     

                   (41)

 

 

                                                

where 

,b
r

a

h L
Bi a

k




   

From Equation (41), it implies that 

 

                                                                       BiaM r 2
                                              (42)                                                                                                                                                                                                          

 

4.3  Fin effectiveness   

 

The removal number or fin effectiveness is the ratio of the fin dissipation (equal, in the 

steady state, to the heat passing through the base of the fin by conduction) to the heat 

passing through the fin footprint of the base or prime surface if the fin were not present. 

Following the definition, the effectiveness of the fin could be expressed mathematically as 

 

f

fb

q

q
                                                                   (43) 

 

where qfb  is the amount of heat dissipation from the area of the fin base and is given by  

 

( )
2

fb b bq Ph T T


 
                                                   (44)

 

 

Substituting Equation (37) and (44) into Equation (43), gives 

 

0

2 ( )

( )

L

f

fb b

Ph T T
q

q Ph T T










 



                                                                                                                

(45) 

 

 

Therefore, the fin effectiveness in dimensionless variables is given by 
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1

0

2 (X)ra dX  
                                                         (46)

 

 

5.0 FIN OPTIMIZATION 

 

The optimization of the fin could be achieved either by minimizing the volume (weight) for 

any required heat dissipation or maximizing the heat dissipation for any given fin volume. 

The later approach is adopted in this work. 

The constant fin volume is defined as V=Acb. Following Equation (37), one can therefore 

write the heat dissipation per unit volume as  

0

( )

L

f

c

Ph T T dx
q

V A b






                                                (47) 

 

The dimensionless form of Equation (47) is given as 
1

0

(T T )

p

f p

f

a b a a c

PhA dX
q A

Q
k V k A


 

  
  


                                  (48) 

 

Equation (48) could be written as  

 
1

2/3

0

fQ M dX                                                       (49) 

 

                                       

 where

2/3

2 p

p

a

h A
A b

k
 

 
  
 
 

 

 

The maximum heat dissipation value occurs at the condition when the optimum fin 

characteristics have been achieved. The fin dimensions in this situation represent the 

optimum fin configuration per unit volume. With the volume constant, the optimization 

procedure is also carried out to fix the profile area Ap by first expressing 
fQ


 as a function 

of the thermo-geometric parameter, M (or fin length, b) and then searching for the optimum 

value of M or b. 
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6.0 RESULTS AND DISCUSSIONS 

 

Figures 2a and 2b show the variation of dimensionless temperature with dimensionless 

length of the fin and also depict the effect of the thermogeometric parameter on the straight 

fin with an insulated tip. It is shown that as the thermogeometric parameter increases, the 

rate of heat transfer (the convective heat transfer) through the fin increases as the 

temperature in the fin drops faster (becomes steeper reflecting high base heat flow rates) as 

depicted in the figures. It can be inferred from the results that the ratio of convective heat 

transfer to conductive heat transfer has much effect on the temperature distribution, rate of 

heat transfer at the base of the fin, efficiency and effectiveness of the fin. As h increases (or 

kb decreases), the ratio h/kb increases at the base of the fin and consequently the temperature 

along the fin, especially at the tip of the fin decreases i.e. the tip end temperature decrease 

as M increases. The profile has steepest temperature gradient at M=1.0, but it is much 

higher value gotten from the lower value of thermal conductivity than the other values of M 

in the profiles produces a lower heat-transfer rate.  
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(d) 

Figure 2. Effects of thermo-geometric parameter on the temperature distribution in the fin 

when  (a) β= -0.3 (b) β=-0.1(c) β=0.1 (d) β=0.3 

 

 

This shows that the thermal performance or efficiency of the fin is favoured at low values 

of thermogeometric parameter since the aim (high effective use of the fin) is to minimize 

the temperature decrease along the fin length, where the best possible scenario is when 

T=Tb everywhere. One of the major important analyses in the fin problem is the 

determination of the rate of heat transfer at the base of the fin. Figure 3a shows the effects 

of no-linear or thermal conductivity term on the dimensionless heat transfer rate at the base 

of the fin while Figure 4 shows the effects of no-linear or thermal conductivity term on the 

dimensionless total heat flux of the fin. Also, the figures depict the variation of the rate of 

heat transfer with the thermo-geometric parameter. It could be deducted that the thermal 

conductivity and the thermo-geometric parameter have direct and significant effects on the 

rate of heat transfer at the base of the fin. Thus, the operational parameters must be 

carefully chosen to ensure that the fin retains its primary purpose of removing heat from the 

primary surface.  
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Figure 3.  Effects of thermal conductivity parameter on heat transfer rate at the base of the 

fin 
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Figure 4.  Effects of non-linear thermal conductivity parameter on the dimensionless total 

heat flux of the fin (a), Bi=0.04 (b) Bi=0.08 
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Figure 5a and 5b show the effects of non-linear thermal conductivity and thermo-geometric 

parameters on the fin efficiency. The figures show that the fin efficiency decreases 

monotonically with increasing thermogeometric parameter. Also, it shows the variation of 

fin efficiency with thermogeometric in longitudinal convecting fin with insulated tip. From 

the figures, it is shown that as the thermogeometric parameter increases, the efficiency of 

the fin decreases. When the thermogeometric fin parameter equals to zero, the fin 

efficiency is 100%, which implies that there is no conduction resistance or no presence of 

fin at all.  As the convective heat transfer coefficient to thermal conductivity ratio 

approaches zero, the temperature at every point in the fin is equal to the temperature of the 

base. The inverse variation in the fin efficiency with the thermo-geometric parameter is due 

to the fact that as more material is attached to the prime surface, the resistance to heat flow 

increases thereby reducing the fin efficiency. Upon further increase in the fin thermo-

geometric parameter, the effect of reducing the resistance becomes visible in the sense that 

the fin efficiency starts to normalize. Therefore, high efficiency of the fin could be achieved 

by using small values of thermogeometric parameter, which could be realized using a fin of 

small length or by using a material of better thermal conductivity. Moreover, the results 

depicted that care must be taken in the choice of length of fin used during applications. This 

is because, thermogeometric parameter (which increases as the fin length increases) tends 

to infinity, and the fin efficiency tends to zero. The fin to a large extent of its length will 

remain at ambient.  This consequently results in weak conduction limit. The extended area 

is largely useless in the heat transfer process and hence inefficient. Therefore, very long 

fins are to be avoided in practice. 
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Figure 5. Effects of non-linear thermal conductivity and thermo-geometric parameters on 

the efficiency of the fin  
 

 

Also, as shown in the Figures 5a and 5b, the fin efficiency is unity in the limit M→0. In this 

limit, the actual heat transfer rate from the fin is zero. This fin parameter (the thermo-

geometric parameter) plays a very important role in determining the amount of heat transfer 

from the fin as it accounts for the effects of decrease in temperature on the heat transfer 

from the fin. Since, the fin temperature drops along the fin length, the fin efficiency 

decreases with increase in fin length. Therefore, in practice required fin length should be 

properly determined because the fin length that causes the fin efficiency to drop below 60% 

usually cannot be justified economically and should be avoided.  

 

Figures 6a and 6b show the effects of non-linear thermal conductivity and thermos-

geometric parameters (under the aspect ratio of 20) on the effectiveness of the fin.  As the 

aspect ratio increases, higher local temperature is produced in the fin, thereby increases the 

effectiveness of the fin. Also, it is shown that high effectiveness of fin could be achieved by 

using small values of thermogeometric parameter and this could be realized using a fin of 

small length or by using a material of better thermal conductivity. 
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Figure 6. Effects of non-linear thermal conductivity and thermo-geometric parameters on 

the effectiveness of the fin  
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Figure 7. Effects of Biot number on the thermo-geometric parameter of the fin 
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The effects of Biot number and aspect ratio on the thermo-geometric parameter (the fin 

performance factor) are shown in Figure 7. The fin performance factor increases as the 

aspect ratio and Biot number increase. However, the thermal performance or efficiency of 

the fin is favoured at low values of thermogeometric parameter since the aim (high 

effective use of the fin) is to minimize the temperature decrease along the fin length, where 

the best possible scenario is when T=Tb everywhere. It must be pointed out that Equation 

(42) shows the direct relationship between the thermogeometric parameter, M and the Biot 

number, Bi which directly depends on the fin length. A small value of M corresponds to a 

relatively short and thick fin of poor thermal conductivity and a high value of M implies a 

long fin or fin with low value of thermal conductivity. Since, the thermal performance or 

efficiency of the fin is favoured at low values of thermogeometric fin parameter, very long 

fins are to be avoided in practice. A compromise is reached for one-dimensional analysis of 

fins 0 < Bi <0.1. When the Biot number is greater than 0.1, two dimensional analysis of the 

fin is recommended as one-dimensional analysis predicts unreliable results for such limit.  

Figure 8a shows the nondimensional heat transfer Q/ζ (for a unit fin volume) varying with 

M from 1 and 2 for specified values of non-linear thermal conductivity terms, β, under a 

given profile area, Ap, the heat transfer first rises and then falls as the fin length increases. 

Also, as the optimum fin length (at which Q/ζ reaches a maximum value) increases as the 

non-linear thermal conductivity term, β increases. It also shows that the optimum value of 

M can be obtained based upon the value of non-linear term. Therefore, from the analysis 

the optimum dimensions of the convection fin with variable thermal conductivity is 

established and the relative values of optimum M and β are shown in Figure 8b. 

The approximate analytical method of solution was validated by the exact solution in 

Figure 9a and 9b for the linear thermal model of the fin problem and the non-linear problem 

was validated with numerical solution as shown in Figures 10a and 10b. It is depicted that 

the double decomposition method is highly accurate and agrees very well with the exact 

solution for the linear problem and also with the numerical solution for non-linear problem. 
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Figure 8 (a) Effects of non-linear thermal conductivity and thermo-geometric parameters on 

the dimensionless heat transfer, Qf/ζ  (b) Effects of non-linear thermal conductivity 

parameter on the optimum thermo-geometric parameter 
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6.1 Validation of results and thermal stability analysis of the fin 
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Figure 9.  Validation of the results when (a) M=0.25, β=0   (a) M=0.5, β=0 
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Figure 10. Validation of the results when (a) M=0.5, β=-0.3 (b) M=1.0, β= 0.4 
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7.0 CONCLUSIONS 

 

In this paper, thermal performance study and optimum design analysis of straight fin with 

variable thermal conductivity have been carried out using double decomposition method. 

The analysis revealed that the fin temperature distribution, the total heat transfer, the fin 

effectiveness, and the fin efficiency are significantly affected by the thermo-geometric and 

thermal parameters of the fin. Also, it is established that the optimum fin length increases 

as the non-linear thermal conductivity term, increases. It also shows that the optimum value 

of M can be obtained based upon the value of non-linear term.Therefore, the operational 

parameters must be carefully chosen to ensure that the fin retains its primary purpose of 

removing heat from the primary surface.  The results obtained in this analysis provides 

platform for improvement in the design of fin in heat transfer equipment. 
 

Nomenclature 

 

ar        aspect ratio 

  Ac      cross sectional area of the fins 

  Ap    profile area of the fins 

  B     Lenght of the fin 

  Bi    Biot number 

h      heat transfer coefficient 

k      thermal conductivity of the fin material 

ka     thermal conductivity of the fin material at ambient temperature   

kb     thermal conductivity of the fin material at the base temperature of the fin 

K     dimensionless thermal conductivity of the fin material 

M    dimensionless thermo-geometric fin parameter 

m2     thermo-geometric fin parameter  

P     perimeter of the fin 

T     Temperature 

T∞   ambient temperature 

Tb   Temperature at the base of the fin 

x     fin axial distance, m 

X    dimensionless length of the fin 

q     rate of heat transfer 

Qf    dimensionless heat transfer 

 

Greek Symbols 

 

β      thermal conductivity parameter or non-linear parameter 

δ      thickness of the fin, m 

θ     dimensionless temperature 

θb    dimensionless temperature at the base of the fin 

η     efficiency of the fin 

ε     effectiveness of the fin       
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