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ABSTRACT 

 
This paper deals with the analysis of geometrically nonlinear structures (plates, 

shells) of laminated composite materials by taking into account delamination 

phenomenon. We suggest a contribution to the modelling of the fibre reinforced 

composite materials damage in order to be able to predict the delamination of 

structures made of this type of material. The damage behaviour in large 

displacements was limited to the elastic domain with hypotheses of the moderate 

rotation theory including delamination phenomenon in the constitutive equations 

based on a damage model. This damage model was based on the use of damage 

mechanics considering three modes of interlaminar degradation which are 

associated with three modes of crack opening. Cracking has been described by a 

weakening of three stiffnesses acting in the three directions and damage 

variables are associated with the degradation of the stiffness matrix. Numerical 

simulations based on the finite element method were carried out predict the 

damage initiation and propagation of composite structures. The numerical 

results are compared with a number of similar results reported in the literature. 
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1.0 INTRODUCTION 

 

For many years, a large number of damage models have been developed for multiple 

applications, from ductile materials to almost brittle behaviour. The mechanics of 

damage have changed considerably since Kachanov's first work (Kachanov, 1958). This 

formalism has shown its advantages in many applications. Without being exhaustive, 

we can cite (Chaboche, 1989), (Krajcinovic, 2010), and (Babu, 2010). Many models 

written in this framework are dedicated to the behaviour of composites. Different 

approaches can be distinguished: some study the microscopic scale and, by 

homogenization technique, deduce the behaviour on a larger scale (Rami, 2007- 

Blassiau, 2005), others are placed on the mesoscopic scale (that of the plies UD). In this 

latter group, several very satisfactory models of damage have been developed. We can 

cite the mesodel of Cachan developed by (Ladevèze et al, 2000) or the ONERA model 

(Laurin et al, 2007). Composite materials are inhomogeneous and generally anisotropic 

solids consisting of two or more materials of different natures. The model presented 

here is placed on a mesoscopic scale and is based on that developed by (Bui et al, 2017), 
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(Babu, 2010), (Hinton et al, 2004) for composite materials. It is based on the theory of 

representation of tensor functions (Boehler, 1978), which are particularly suited to the 

modelling of anisotropic materials. It is thus desired to explore the capacities of these 

tools to reproduce the degradation of laminated composite shell subjected to stresses in 

large displacements. A formulation for anisotropic damage is established in the 

framework of the principle of strain equivalence. The damage variable is still related to 

the surface density of microcracks and microvoids and is represented by a second-order 

tensor. The coupling of the damage with the elasticity is written in tensor form. The 

evolution law is an extension of the classical law of isotropic damage. The damage 

tensor allows to link the actual stresses to their nominal quantities which are measurable 

externally (observable variables). The continuous description of the damage makes it 

possible to represent finely the initiation and propagation of the delamination in the 

stratified composite structures. The numerical results of delamination simulations are 

compared with those obtained from the literature give a good validation of the 

anisotropic model developed in this study. 

 

 

2.0 LAMINATED COMPOSITE SHELL 

 

The laminated shell is composed of a finite number of layers parallel to a reference 

surface Ω, chosen to coincide with the average surface of the first layer (Figure 1). Each 

layer has different physico-mechanical properties and different fiber orientations. The 

behavior of each layer is linearly elastic and anisotropic. The delamination is due to the 

interlaminar stresses which are exerted on weak interfaces. The material constituting 

each layer is assumed to be homogeneous and anisotropic, the anisotropy being 

symmetrical with respect to the reference surface Ω ( 03  ). Our material possesses 

three planes of symmetry, it is orthotropic (Kreja & Schmidt, 2005). The composite 

shell consists of orthotropic materials reinforced with fibers embedded in layers. Each 

layer is characterized by its orthotropy reference  i  such that the axis 
1  is aligned 

with the direction of the fibers, while the axis 
3  is normal to the average surface 

(Figure 1). In the system of axes i , the components of the elasticity tensor relative to 

the reference axes of the fibers of the layer L are 
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Where the components 
ijkl

L
C
~

take the following values (Barbero et al, 1990): 
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The elasticity tensor 
L

C is determined by the 9 constants independent of the relations 

(3). The tensor LC  must also be expressed in the coordinate system  
i

g  using 

following transformations (Figure 1) 
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which leads to 
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The basic vectors in the coordinate systems 
i and 

i are linked by the following 

relation: 
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For the layer L, the relation (5) becomes, then 
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Figure 1. Main coordinates of a layer  i  and the curvilinear coordinates  i . 

 

The coordinate 
3 always remains normal to the reference surface Ω and since 

33  

we obtain 
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when the vectors of the space base  
i

g  are orthogonal, one obtains  
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where 


g  (no summation) are the components of the metric tensor and   the angle 

indicating the orientation of the fibres (Figure 1). 

 

For an orthotropic material we have 03 

L
C and 0333 

L
C  (Merzouki et al, 2007), 

therefore 
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Greek indices take the values 1 and 2. 

 

The above relationships can be written in matrix form by defining the matrix   6x1MijS

and  6x1MijE . 

 

Then, 
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The matrix   6x6Mijkl

L
C in the curvilinear coordinate system  i can also be determined 

using the base change matrix [T], such that 
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where    6x6MT  is denoted by 

 

                                   

   
   

661221221122122111

1112

2122

2221

2

22

2

21

1211

2

12

2

11

000

0000

0000

000100

2000

2000

x
dddddddd

dd

dd

dddd

dddd

T





























  (13) 

 

and  j

i
eg ˆd

ij
  (see relationships (8) and (9). 

 

 

3.0 ANISOTROPIC DAMAGE 

 

The damage in composite materials is due to the heterogeneities that give rise to stress 

concentrations. This case occurs at the interface between the fibre and the matrix, where 

decohesions can appear. Anisotropy also causes stress concentrations, especially at the 

interface between adjacent plies of different orientations, causing delamination. It is 

difficult to define a typical scenario which would lead to the failure of laminated 

composite structures, as the mechanisms of damage are numerous and complex 

[Ladeveze & Lubineau, 2003]. However, the phenomenon of delamination remains one 

of the most important problems faced by laminated composite materials. The 

phenomenon of delamination constitutes a particular case of anisotropic damage. 

Taking into account that the geometric effect of cavities and cracks, we can introduce 

on each element of area, spotted by its normal n


, an area reduction  n


  and the state 

of damage is characterized by a tensor of second order which is expressed in its main 

coordinate system by 
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Where j  and jn


 are the principal values and the unit vectors of the principal 

directions (directions which coincide with the axes of the material) of the tensor 

respectively. Symmetric tensor of damage of second order are most commonly used 

because of their mathematical simplicity compared to the tensor of higher order. They 

can describe most of anisotropic damage. However, these tensors of second order 

cannot represent a complicated state of damage such as orthotropic damage. The second 

order damage tensor were often used in the development of theories of anisotropic 

damage (Bui et al, 2017- Bielski et al, 2006- Chandra et al, 2008- Rajhi et all, 2014). 

Damage variables used to link the effective stresses at their nominal quantities that are 

measurable externally (observable variables). The law taking into account the damage 

behaviour is then written 
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where  C


 is the Hooke elasticity tensor for damaged material. 

For a general state of deformation and damage, the nominal stress tensor can be 

connected to the tensor of the effective stresses by the following linear transformation 
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which M is an operator of damage (order tensor 4). Following the shape used for tensor 

M , it is clear that from equation (3), the stress tensor S is generally not symmetrical. 

For the symmetry of tensor S , (Bui et al, 2017) use an energy equivalence instead of 

deformation equivalence and propose the following expression 
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The fourth order tensor of the damaged material corresponding to equation (16) can be 

defined by 
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Then the tensor is symmetric 
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For a virgin material (not damaged), I  which corresponds to the identity 

transformation  SS


 . In the literature, one can find the damage tensor denoted by the 

variable D such that  

 

                                                                      1
 DI   (20) 

 

 



Anisotropic Damage Modelling of Composite Plates and Shells 

 
 

ISSN: 2180-1053         Vol. 9 No.1       January – June 2017                         39 

 

Tensors Det  have the same principal axes and principal values are such that 

(Andrew et al, 2008) 
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jD  can be interpreted as the ratio of the area reduction in the plane perpendicular to jn


 

caused by the development of cracks (Ganczarski et al, 2007 ). jD varies between 0 and 

1 while   varies between 1 (virgin material) and   (completely damaged material). 

  is considered as an internal state variable which characterizes the anisotropy of 

distribution of the microcracks in the material. 

 

To determine the relationship between the strain tensor and stresses three approaches 

are used:  strain equivalence, stress equivalence and energy equivalence. Unlike the 

equity deformation and stress, energy equivalence induces the symmetry of the tensor of 

rigidity and flexibility. This approach recognizes that the elastic energy stored in the 

damaged material is the same as the elastic energy stored in the equivalent virgin 

material, where in the nominal quantities by the effective amounts is replaced (Rouabhi, 

2004): 
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From relations (17) and (22) is easily obtained 
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The degradation can be considered as the average effect of any microcracks developed 

in the material (Marriage, 2003). In this context, it is assumed that the material obeys 

the general law of Hooke in the damaged state (Ghosh & Sinha, 2005), then we can 

write 
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Combining equations (22) and (23) with equations (24) and (15), one obtain 
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Taking into account the relation (21), equation (26) is written yet  
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The fourth tensor of equation M then becomes 
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The coupling between the damages j
  ( j variables representing the damage in the 

principal directions of the tensor) makes it possible to write the fourth order tensor M in 

the following form: 
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Considering the relation (27), the fourth order tensor M of the relation (29) can be 

written as  
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We will then use the Voigt notation for the components of the elasticity tensor such as: 
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The orthotropic material elasticity tensor can be written as: 
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Considering the relation (30), the constitutive law (Equation 25) of the damaged 

orthotropic material can be written as: 
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  (32) 

 

 

4.0 DELAMINATION 

 

The interface between two plies may break under local stress peel and / or shear 
13S and

23S  (Figure 2). It then creates an interlaminar fracture called delamination. 

 

 

 
Figure 2. Interlaminar stresses responsible of delamination 

 

Delamination only affects terms of shear and normal of the part above the plane strain 

field. Therefore the behaviour of law (10) for an orthotropic material, is written 
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    (33) 

 

Greek indices take the values 1 and 2. 

 

The damages are closely coupled because the same microcracks are participating in the 

delamination phenomenon. Therefore, (Gupta et al, 2005) introduced an evolution law 

as: 
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  (34) 

 

where  
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 energy release rate equivalent [Gornet & 

Sinha, 2000]. 1  and 2 are coupling parameters between shear and transverse energy, 

and   another material parameter used to describe the shape of the fracture surface. In 

Fracture Mechanics   is determined by delamination tests in mixed mode [Aiello et al., 

2003] and the rate of energy release in the three modes of delamination failures are 

defined as: 

 

                          
20

13 13 13
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20

23 23 23

1

2
Y k u     

20

33 33 33

1

2
Y k u   (35) 

                              mode III                    mode II                        mode I 

 
0
3ik  are the interface stiffness and  3,2,10

3 iui  represent the relative displacements at the 

interface. We can observe that the more the interface is ‘strong’ and the more the 

coefficient n is important. 0Y   and 
fY  are initiation and rupture threshold delamination 

(see Benzerga, et al, 2014).  

 

 

5.0 APPLICATION EXAMPLES 

 

In this section, numerical investigations are presented and our results are compared to 

analytical solutions found in literature in order to validate our model.  

 

5.1 Composite plate (0/90) 

 

The first plate is composed of two layers (0/90) cantilever subjected to a shearing force 

evenly distributed at its free end (Figure 3). This plate has 100 mm of length (L), 10 mm 

of width (b) and 3 mm of thickness (h). The mechanical properties of laminated 

composite are presented in Table 1. 

 

Table 1. Mechanical characteristics of composite 

 

Young’s modulus Shear Modulus Poisson coefficient 

E11 E22=E33 G12=G13 G23 12=13=23 

1.0 x 103 

 GPa 

0.3 x 103 

GPa 

0.15 x 103 

GPa 

0.12 x 103 

GPa 
0.25 
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Figure 3. Composite plate (0/90) cantilevered 

 

The second plate is composed of two layers (0/90) subjected to a uniform pressure 

(Figure 4). This plate has 228.6 mm of length (L), 38.1 mm of width (b) and 1.016 mm 

of thickness (h). The mechanical properties of laminated composite are presented in 

Table 2. 

 

Table 2. Mechanical characteristics of composite 

 

Young’s modulus Shear Modulus Poisson coefficient 

E11 E22=E33 G12=G13 G23 12=13=23 

140 

 GPa 

9.8 

GPa 

4.9 

GPa 

0.84 

GPa 
0.3 

 

 
 

Figure 4. Composite Plate (0/90) under pressure 

 

Figure 5 presents the evolution of the applied force or pressure versus displacement. 

This figure illustrates the comparison between the present study and analytical results 

from (Kreja & Schmidt, 2005) and (Arciniega, 2005). Analytical results correspond to 

the shell theory without taking into account the damage phenomenon. It should be noted 

that, from zero to A, the two curves have similar behaviour with an absence of any 

damage phenomena. From point A, the two curve diverge resulting from the damage 

initiation and propagation at the composite interface. However, the nature of applied 

load has an influence on the initiation of delamination. The results obtained show that 

for applied force the damage initiation starts at 60 mm of displacement (Figure 5a), 

whereas for applied pressure the damage starts at 10 mm of displacement (Figure 5b). 
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(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

Figure 5. Displacement of the center of the plate (a) shearing force and (b) under 

pressure loading 
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5.2. Stretching of an open thin cylinder 

 

This example is the most requested test in the literature for the analysis of isotropic 

shells moderate rotations. Currently, composite variations of this test have been 

proposed. A laminate cylinder (0/90) of short length subjected to two opposing forces in 

its central section, both ends remain free (see Figure 6a). This cylinder has 131.445 mm 

of length (L), 125.8062 mm of radius (R) and 2.3876 mm of thickness (h). The cylinder 

is characterized by the geometrical data and the following mechanical properties (Table 

3). 

Table 3. Mechanical characteristics of cylinder 
 

Young’s modulus Shear Modulus Poisson coefficient 

E11 E22=E33 G12=G13 G23 12=13=23 

213.5 

 MPa 

73.5 

MPa 

28 

MPa 

28 

MPa 
0.3125 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) A laminate cylinder (0/90) subjected to two opposing forces in its central section 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Displacement curve of laminate cylinder center A 

 

Figure 6. Behaviour cylinder (0/90) under two opposing forces in its central section 
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5.3 Laminated cylindrical panel secured at both ends subjected to a 

concentrated load in the middle. 

 

Figure 7 shows a cylindrical laminate panel (0/90/0/90) is submitted to concentrated 

force in its centre. The mechanical and geometrical properties are presented in Table 4 

and 5. 

Table 4. Mechanical characteristics of cylinder 
 

Young’s modulus Shear Modulus (MPa) Poisson coefficient 

E11 E22=E33 G12=G13 G23 12=13=23 

143.22 x 103 

 MPa 

34.44 x 103 

 GPa 

17.76 x 103 

MPa 

17.76 x 103 

MPa  
0.313 

 

Table 5. Geometry of cylinder 
 

Length Radius Angle Thickness (mm) 

L (mm) R (mm)  h (mm) 

139.7 304.8 0.5 1.016 

 

 
(a) Laminated cylindrical panel submitted to concentrated force in its centre 
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(b) Displacement of laminated cylindrical panel center 

Figure 7. Behaviour of laminated cylindrical panel subjected to a concentrated load at 

its centre. 
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Figure 7 shows the result of the central displacement of cylindrical panel according to 

the central load. It can be seen that the buckling load predicted by our approach is close 

to that obtained by (Kreja and Schmidt 2005). However, a difference appears in the 

post-buckling region when the delamination begins to appear. 

 

 

5.4. Semi-cylindrical shell 

 

Figure 8 shows the laminated half-cylinder (0/90/0) subjected to a concentrated load 

applied to its free end. This cylinder has 304 mm of length (L), 101.6 mm of radius (R) 

and 3.3 of thickness (h). The material composite properties are presented in Table 6. 

 
Table 6. Mechanical characteristics of cylinder 

 

Young’s modulus Shear Modulus Poisson coefficient 

E11 E22=E33 G12=G13 G23 12=13=23 

2068.5 

MPa 

517.125 

MPa 

795.6 

MPa 

198.89 

MPa  
0.3 

 

Figure 8 shows the displacements of the point A compared to those of reference 

[Arciniega Aleman, 2005]. The results are quite close before the appearance of 

delamination phenomenon. 

 

 

 
 

(a) Laminated half-cylinder subjected to force in its center 
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(b) Displacement of the centre A of laminated half-cylinder 

 

Figure 8. Behaviour of the laminated half-cylinder submitted to load in its centre 

 

 

6.0 CONCLUSIONS 

 

An anisotropic damage model, based on the concept of continuum damage  mechanics, 

was developed to simulate the delamination phenomenon in laminated  composite shells 

composed of unidirectional plies subjected to large displacement. These composite 

structures have the enormous advantage of being able to adapt to any loading by 

orienting the fibers according to the direction of stresses. The behavior was limited to 

the elastic domain with the assumptions of the moderate rotational theory (MRT5) 

including the delamination phenomenon in the constitutive equations.  Using the ansys 

programmable langauage, subroutine was developed and implemented  in the main 

code. Different geometries have been used to validate the damage model presented in 

this study for predicting delamination initiation and propagation. The results of these  

first simulations, are in good agreement with the results obtained from the literature, 

indicate that the proposed model is able to describe the degradation modes in composite 

structures. They open the way to many perspectives. In the first stage, it is now 

necessary to compare the simulations on composite structures, whose stacking sequence 

is more complex. It is also desired to introduce into the developed model all the types of 

degradation to which a laminated  shell could be confronted. 
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