Designing and Developing Smart Plant Information System
Abstract
Full Text:
PDFReferences
J. Corley et al., “Home garden use during COVID-19: Associations with physical and mental wellbeing in older adults,” J. Environ. Psychol., vol. 73, no. November 2020, p. 101545, 2021, doi: 10.1016/j.jenvp.2020.101545.
S. N. Reis, M. V. dos Reis, and A. M. P. do Nascimento, “Pandemic, social isolation and the importance of people-plant interaction,” Ornam. Hortic., vol. 26, no. 3, pp. 399–412, 2020, doi: 10.1590/2447-536X.V26I3.2185.
A. Ewert and Y. Chang, “Levels of nature and stress response,” Behav. Sci. (Basel)., vol. 8, no. 5, pp. 1–13, 2018, doi: 10.3390/bs8050049.
S. A. Park, A. Y. Lee, K. C. Son, W. L. Lee, and D. S. Kim, “Gardening intervention for physical and psychological health benefits in elderly women at community centers,” Horttechnology, vol. 26, no. 4, pp. 474–483, 2016, doi: 10.21273/horttech.26.4.474.
K. L. Davis and L. S. Brann, “Examining the Benefits and Barriers of Instructional Gardening Programs to Increase Fruit and Vegetable Intake among Preschool-Age Children,” J. Environ. Public Health, vol. 2017, 2017, doi: 10.1155/2017/2506864.
M. G. Selvaraj et al., “AI-powered banana diseases and pest detection,” Plant Methods, vol. 15, no. 1, pp. 1–11, 2019, doi: 10.1186/s13007-019-0475-z.
N. Mohamood, N. Zainal, A. F. Kadmin, S. F. A. Gani, and T. M. F. T. Wook, “Integrated Smart Farming Based on Internet of Things (Iot) System for Figs Cultivation,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 2, pp. 1429–1436, 2019, doi: 10.35940/ijitee.b6157.129219.
K. Prema and C. M. Belinda, “Smart farming: Iot based plant leaf disease detection and prediction using deep neural network with image processing,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 9, pp. 3081–3083, 2019, doi: 10.35940/ijitee.i7707.078919.
R. D. Devi, S. A. Nandhini, R. Hemalatha, and S. Radha, “IoT enabled efficient detection and classification of plant diseases for agricultural applications,” 2019 Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2019, pp. 447–451, 2019, doi: 10.1109/WiSPNET45539.2019.9032727.
S. P. Raut and A. S. Bhalchandra, “Plant Recognition System Based on Leaf Image,” Proc. 2nd Int. Conf. Intell. Comput. Control Syst. ICICCS 2018, no. Iciccs, pp. 1579–1581, 2019, doi: 10.1109/ICCONS.2018.8663028.
T. Q. Bao, N. T. T. Kiet, T. Q. Dinh, and H. X. Hiep, “Plant species identification from leaf patterns using histogram of oriented gradients feature space and convolution neural networks,” J. Inf. Telecommun., vol. 4, no. 2, pp. 140–150, 2020, doi: 10.1080/24751839.2019.1666625.
P. Barré, B. C. Stöver, K. F. Müller, and V. Steinhage, “LeafNet: A computer vision system for automatic plant species identification,” Ecol. Inform., vol. 40, no. December 2016, pp. 50–56, 2017, doi: 10.1016/j.ecoinf.2017.05.005.
A. Bapat, S. Sabut, and K. Vizhi, “Plant leaf disease detection using deep learning,” Int. J. Adv. Sci. Technol., vol. 29, no. 6, pp. 3599–3605, 2020.
W. L. Chen, Y. B. Lin, F. L. Ng, C. Y. Liu, and Y. W. Lin, “RiceTalk: Rice Blast Detection Using Internet of Things and Artificial Intelligence Technologies,” IEEE Internet Things J., vol. 7, no. 2, pp. 1001–1010, 2020, doi: 10.1109/JIOT.2019.2947624.
S. Hernández and J. L. López, “Uncertainty quantification for plant disease detection using Bayesian deep learning,” Appl. Soft Comput., vol. 96, p. 106597, 2020, doi: 10.1016/j.asoc.2020.106597.
T. Talaviya, D. Shah, N. Patel, H. Yagnik, and M. Shah, “Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides,” Artif. Intell. Agric., vol. 4, pp. 58–73, 2020, doi: 10.1016/j.aiia.2020.04.002.
M. A. Genaev, E. S. Skolotneva, E. I. Gultyaeva, E. A. Orlova, N. P. Bechtold, and D. A. Afonnikov, “Image-based wheat fungi diseases identification by deep learning,” Plants, vol. 10, no. 8, 2021, doi: 10.3390/plants10081500.
Refbacks
- There are currently no refbacks.
ISSN : 2590-3551, eISSN : 2600-8122
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).
Best viewed using Mozilla Firefox, Google Chrome and Internet Explorer with the resolution of 1280 x 800