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Abstract— Accidental falls are considered 
a major cause of accidents that could lead 
to serious injuries, paralysis, psychological 
damage, and even deaths, especially for the 
elderly. Therefore in this project, a neural 
network-based fall detection system that could 
automatically detect a fall event is proposed. 
The system is enhanced with Internet-of-
Things (IoT) features that could reduce the 
response time and efficiently improve the 
prognosis of fall victims. A 10 Degree of 
Freedom (DOF) Inertial Measurement Unit 
(IMU) module is connected to an Intel Edison 
with Mini Breakout board and mounted on a 
wearable waist-worn device to continuously 
record body movements. A backpropagation 
neural network algorithm has been developed 
to accurately distinguish falls from different 
postural transitions during activities of daily 
living (ADL). A body temperature and heart-
pulse monitoring device were developed for 
this system to provide the medical personnel 
additional information on the body condition of 
the fall victim. Using the latest IoT-technology, 
the system can be connected to the internet and 
provides a continuous and real-time monitoring 
capability. Once a fall accident happens, the 
system will be automatically triggered. This 
will activate an Android App through the Wi-Fi 
network that will then send an emergency SMS 
with the actual location and body conditions of 
the victim to a recipient. A series of falls and 
ADL simulations were performed by a group of 

subjects to test and validate the performance of 
the system. The experiment results showed that 
the proposed system could obtain a sensitivity 
of 95.5%, specificity of 96.4%, and accuracy of 
96.3%.

Keywords— Fall detection, neural network, 
voice response, vital-sign monitoring, Internet-
of-Things (IoT).

I. INTRODUCTION

F ALL accident is one of the health risks 
which frequently happens, especially for 

the elderly who over the age of 65 years old. 
There are about 33% of the elderly are reported 
to experience fall injuries at least once per year 
and 68% hospitalization of the elderly is fall-
related [1]. Moreover, there are some sports 
activities like hiking that will cause serious fall 
injuries for people. Every year, fall accidents 
will cause about 10,000 deaths among humans 
aged 65 years and above in the United States [1]. 
In Malaysia, it is expected that in 2035 the senior 
citizen will make up 15% of its population [2]. 
This trend indicates a need for reform in the 
healthcare monitoring and delivery system. 
There are many reasons for fall accidents, such 
as heart attack and heat stroke. These reasons 
are usually unknown to the doctors or the 
rescue team until they reach the accident scene. 
Therefore, in this paper, the study and design of 
an accurate and real-time human fall detection 
system with a vital sign monitoring function 
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will be presented. The system could reduce 
the response time to fall-related accidents and 
help the medical team in the decision-making 
process.
	 Over the last decade, the approach on 
fall detection and alert system is normally 
categorized into ambient-based, vision-based, 
and wearable device-based [3-6]. However, 
ambient-based and visual-based methods are 
impractical and can be significantly affected by 
the external environment [7, 8]. The interference 
factors which exist in the visual-based method 
will increase the difficulty for fall detection and 
the recognition rate is just about 50% -70% [3]. 
The Wearable sensors-based approach works 
by measuring and processing the inertial signal 
of human motion, such as the acceleration and 
the angular rate [9-12]. However, there is some 
difficulty distinguishing between falls and non-
fall activities, such as running and lying down. 
Some researchers proposed a method, which 
predicts falls using a threshold of the angle and 
time [13-17]. Since the fall events could occur 
randomly, this method is unstable and has a 
low recognition rate. By applying the neural 
network algorithm, the presence of falls can be 
accurately detected even before the collision 
happens [18-21].
	 Meanwhile, the latest trend of connecting 
physical devices to the internet or Internet-
of-Things (IoT) leads to improvements in 
healthcare monitoring [22-24]. Easy access to 
Wi-Fi connections in the cities and even rural 
areas makes it the medium of choice for IoT 
applications. In 2014, Bai et al. [4] introduced 
a  human fall detection system with a voice 
response function. A connected device allows 
not only a real-time alert system but also the 
transfer of additional information such as the 
vital sign signals, locations of accidents, and 
nearest hospitals. 
	 In the first part of this paper, the 
methodology used in the project is described. 
This includes the system overview, hardware, 
and the development of the android application. 
Next, the experiments and the measured 
human motion signals are presented. The final 
part of the methodology section describes the 

proposed fall detection algorithm using a neural 
network. Finally, the performance of the system 
is discussed in the result section.

II. METHODOLOGY
A. System Overview
A GY-80 10 DOF IMU module is mounted to 
the Intel Edison with Mini Breakout Board 
and worn on the waist of the human body to 
continuously record body movements and 
detect body postures. The module must be 
rigidly attached to the waist of the target to 
eliminate errors in the measurement. The 
vital-sign monitoring device which consists 
of an LM35 temperature sensor and pulse rate 
sensor will be worn on the wrist of the user to 
measure the body temperature and pulse rate. 
The vital-sign monitoring device will send the 
information on the body condition of the user to 
the smartphone when fall activities are detected. 
Once a fall accident happens, the alert system 
will trigger and send emergency messages, 
body conditions, and the actual location of the 
user to his parents or friends. Fig. 1 shows the 
block diagram of the system.
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B. Hardware Description 
The 10-DOF IMU module with model-number GY80-10 is 

mounted to the Intel® Edison with Mini Breakout Board to be 
used for data acquisition. It consists of an L3G4200D (3-Axis 
Gyroscope), ADXL345 (3-Axis Digital Accelerometer), 
HMC5883L (3-Axis Magnetometer), and BMP085 
(Barometer). The IMU module is shown in Fig. 2(a). It has a 
dimension of (25.8 x 16.8) mm and a 3 mm installation hole. In 
this system, only the accelerometer and angular rate sensor are 
used to collect falling data. Although most smartphones consist 
of integrated accelerometer and gyroscope, there are some 
difficulties for the real-time monitoring of the activities of the 
elderly using those sensors. Moreover, further, improvement 
using more sensors in the system is possible if the IMU module 
is used. Therefore, external sensors might more appropriately 
be applied in the system.  

The system is powered by a rechargeable lithium-polymer 
battery for a lightweight and longer operational time for the 
system. The Intel Edison board is packed with a huge amount 
of tech features in a small size while still delivering the same 
robust strength as your go-to single board computer. The 

Edison board is powered by an Intel® Atom™ SoC dual-core 
CPU and consists of an integrated Wi-Fi, Bluetooth LE, and a 
70-pin connector to attach a veritable slew of shield-like 
“Blocks” which can be stacked on top of each other [9]. Its low 
power and small footprint make it ideal for projects that need a 
lot of processing power, but with a minimum power source and 
small footprint. The Intel® Edison with Mini Breakout Board 
is shown in Fig. 2(b). 
 For the vital sign monitoring device included in this system, 
an LM35 temperature sensor and pulse rate sensor module are 
connected to NodeMcu Lua ESP-12E ESP8266 Wi-Fi 
Development Board Ver2 to measure the body temperature and 
pulse rate of the subjects. NodeMCU is an open-source 
platform for the Internet of Things (IoT).  It consists of ESP-12 
module-based hardware and firmware which runs on the 
ESP8266 Wi-Fi SoC from Espressif Systems. The term 
"NodeMCU" by default refers to the firmware rather than the 
development kits. The programming of firmware is based on 
the Lua scripting language. However, NodeMCU also able to 
be programmed using the Arduino IDE.  
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The module must be rigidly attached to the waist of the target 
to eliminate errors in the measurement. The sole reason for the 
best performance of the sensor unit on the waist position may 
be due to the waist is the centre of gravity of the human body 
and truly reflects the posture of the trunk. 
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The LM35 temperature sensor is a precision integrated-circuit 
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−55˚ to +150˚C temperature range. The output voltage of LM35 
is directly proportional to the Celsius (Centigrade) temperature. 
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B. Hardware Description
The 10-DOF IMU module with model-number 
GY80-10 is mounted to the Intel® Edison 
with Mini Breakout Board to be used for 
data acquisition. It consists of an L3G4200D 
(3-Axis Gyroscope), ADXL345 (3-Axis 



Development of a Fall Detection System Based on Neural Network Featuring IoT-Technology

39ISSN: 2590-3551     eISSN: 2600-8122            Vol. 5     No. 1    April 2021

Digital Accelerometer), HMC5883L (3-Axis 
Magnetometer), and BMP085 (Barometer). 
The IMU module is shown in Fig. 2(a). It 
has a dimension of (25.8 x 16.8) mm and a 3 
mm installation hole. In this system, only the 
accelerometer and angular rate sensor are 
used to collect falling data. Although most 
smartphones consist of integrated accelerometer 
and gyroscope, there are some difficulties for 
the real-time monitoring of the activities of the 
elderly using those sensors. Moreover, further, 
improvement using more sensors in the system 
is possible if the IMU module is used. Therefore, 
external sensors might more appropriately be 
applied in the system. 
	 The system is powered by a rechargeable 
lithium-polymer battery for a lightweight and 
longer operational time for the system. The Intel 
Edison board is packed with a huge amount of 
tech features in a small size while still delivering 
the same robust strength as your go-to single 
board computer. The Edison board is powered 
by an Intel® Atom™ SoC dual-core CPU and 
consists of an integrated Wi-Fi, Bluetooth LE, 
and a 70-pin connector to attach a veritable slew 
of shield-like “Blocks” which can be stacked on 
top of each other [9]. Its low power and small 
footprint make it ideal for projects that need a 
lot of processing power, but with a minimum 
power source and small footprint. The Intel® 
Edison with Mini Breakout Board is shown in 
Fig. 2(b).
	 For the vital sign monitoring device 
included in this system, an LM35 temperature 
sensor and pulse rate sensor module are 
connected to NodeMcu Lua ESP-12E ESP8266 
Wi-Fi Development Board Ver2 to measure the 
body temperature and pulse rate of the subjects. 
NodeMCU is an open-source platform for the 
Internet of Things (IoT).  It consists of ESP-12 
module-based hardware and firmware which 
runs on the ESP8266 Wi-Fi SoC from Espressif 
Systems. The term "NodeMCU" by default refers 
to the firmware rather than the development 
kits. The programming of firmware is based 
on the Lua scripting language. However, 
NodeMCU also able to be programmed using 
the Arduino IDE. 
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	 The module must be rigidly attached to 
the waist of the target to eliminate errors in 
the measurement. The sole reason for the best 
performance of the sensor unit on the waist 
position may be due to the waist is the centre of 
gravity of the human body and truly reflects the 
posture of the trunk.
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	 The LM35 temperature sensor is utilized 
as a part of the system to quantify the body 
temperature of the human body. The LM35 
temperature sensor is a precision integrated-
circuit temperature sensor, which has an 
operating temperature over a −55˚ to +150˚C 
temperature range. The output voltage of 
LM35 is directly proportional to the Celsius 
(Centigrade) temperature. A Pulse sensor is 
utilized in the system to measure the heart rate 
of the user. For the pulse rate measurement, 
the sensor clips onto a fingertip or earlobe 
and connects to the microcontroller with some 
jumper cables.
	 For the vital-sign monitoring device, the 
prototype was completed using a small container 
and a wristband. An LM35 temperature sensor 
and a pulse rate sensor were connected to the 
NodeMCU board and placed inside the small 
container.  Fig. 4 shows the prototype of the 
vital-sign monitoring device.
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completed using a small container and a wristband. An LM35 
temperature sensor and a pulse rate sensor were connected to 
the NodeMCU board and placed inside the small container.  Fig. 
4 shows the prototype of the vital-sign monitoring device. 
 

 
Fig. 4. Prototype of the vital-sign monitoring device 

C. Development of Android Application 
 The system is implemented on the Android platform that 
allows receiving via a Wi-Fi interface. An Android Application 
was developed using the Android Studio software. The Android 
Application will be connected to the microcontroller through 
TCP/IP (Transmission Control Protocol/Internet Protocol) 
using the HTTP method. The Android Application consists of 
the shortest message service (SMS) and global positioning 
system (GPS) location service of the smartphone. The actual 
location is determined using the integrated GPS module of the 
smartphone. The data processing process will be implemented 
in the format of service, which will run in the background. This 
system includes the voice response function that consists of a 
text-to-speech (TTS) system. The text-to-speech (TTS) system 
analyses language text and convert the language text into 
speech. This system will acquire the user’s input before sending 
any emergency notification. Fig. 5 shows the block diagram of 
a typical TTS system.  
 The alert screen will pop out when the system detects any fall 
occurs as shown in Fig. 6(a). The users may press the “Yes” or 
“No” button depending on the necessity of sending an alert 
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To develop the fall detection algorithm and 
validate the proposed solution, two simulation 
experiments were carried out with the wearable 
electronic module placed on each subject’s waist 
as shown previously in Fig. 3. The experiments 
were conducted by fifteen human subjects, 
who performed various ADL motions such 
as walking, sitting, running, and jumping. In 
the second experiment, different types of fall 
motions such as fall forward, fall backwards, 
fall left, and fall right had been performed.
	 Acceleration and gyroscope data (in 
three dimensions) were gathered from the 
accelerometer and gyroscope of the GY80-IMU 
module. The collected data are sampled at 100 
Hz and recorded in a Micro SD card for further 
processing. Fig. 7 shows the simulation of the 
fall as performed by one of the subjects.
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E. Signal Processing
Signal processing of the signals from the GY80-
IMU module such as transformation, filtering, 
and visualization will be performed using 
the Signal Processing Toolbox of MATLAB 
software. The Signal Processing Toolbox can be 
used for signal analysis in time, frequency, and 
time-frequency domains, patterns, and trend 
identification, feature extraction, and custom 
algorithm development and validation. 
	 The signal data were filtered to reduce 
noise and compensate for gyroscope drift. In 
the latter case, a high-pass filter was applied 
to the acceleration and angular velocity data 
from the IMU module. The data are high-pass 
filtered with a second-order Butterworth filter. 
The gyroscope data are prone to drift and the 
angle derived from angular velocity continues 
to change during integration even when the 
sensor is stationary.
	 During fall detection, the information on 
the acceleration or rotation of the body in any 
specific direction is less important. Rather, an 
aggregate that combines the 3-dimensional 
sensor outputs may be more suitable to be 
considered for the analysis. For this reason, 
vector magnitude is used as a data feature 
for feature extraction; the vector magnitude 
of acceleration and angular velocity can be 
calculated with the formula below:
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                              𝐺𝐺 = √𝑔𝑔𝑥𝑥2 + 𝑔𝑔𝑦𝑦2 + 𝑔𝑔𝑧𝑧2                            (2) 

 
where ax, ay and az are the accelerometer readings for each 
axis and gx, gy and gz are the gyroscope readings for each axis 
 

F. Artificial Neural Network 
A neural network was designed to detect falls and classify 

movement patterns. The neural network algorithm was created, 
trained, visualized, and simulated using the Neural Network 
Toolbox of MATLAB software. Then, the final form of the 
algorithm was converted into C-code before being uploaded to 
the microcontroller. 

The training input pattern obtained from the sensors is given 
to the network input unit. The input pattern is propagated 
forward in the network from layer to layer until the output 
pattern is generated by the output layer. If the generated output 
pattern is different from the target output, the error will be 
determined and propagated backward through the network from 
the output layer to the input layer. The weights are adjusted as 
the error is propagated. 

The three-layer network shown in Fig. 8 is considered to 
derive the backpropagation learning law. Let the indices i, j, and 
k represent the neurons in the input, hidden and output layers, 
respectively. Generally, 𝑖𝑖 indicates the number of input signals 
and k denotes the number of recognition patterns. x1, x2, x3 until 
xn are input signals which propagated forward through the 
network from the input layer to the output layer, and error 
signals, e1, e2, e3 until el, propagated backward from the output 
layer to the input layer. The symbol wij refers to the synaptic 
weight for the connection between neuron i in the input layer 

and neuron j in the hidden layer. The symbol wjk represents the 
synaptic weight between neuron j in the hidden layer and 
neuron k in the output layer. 

 

 
Fig. 8. Multilayer neural network structure 

 

 

Step 1: Initialization 

The synaptic weights and threshold θ of the network are set 
randomly by constant distribution within a small range: 

                                     (− 2.4
𝐹𝐹𝑖𝑖

, 2.4
𝐹𝐹𝐹𝐹 )                                     (3) 

 
where Fi represents the sum of the inputs of neuron i in the 
network. The weight is initialized based on a neuron-by-neuron 
basis. 
 
Step 2: Activation 
The back-propagation neural network is activated by putting in 
the inputs x1(p), x2(p), x3(p), until xn(p) and target outputs 
yd,1(p), yd,2(p), yd,3(p), until yd,n(p). 

(a) The actual outputs of the neurons in the hidden layer, yj are 
calculated: 
 
            𝑦𝑦𝑗𝑗(𝑝𝑝) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[∑ 𝑥𝑥𝑖𝑖(𝑝𝑝) ∙ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) − 𝜃𝜃𝑗𝑗)𝑛𝑛

𝑖𝑖=1 ]         (4) 

where sigmoid denotes the sigmoid activation function, n refers 
to the number of inputs of neuron j in the hidden layer, p is the 
number of iteration and θ is the threshold. 

(b)The actual outputs of the neurons, in the output layer, yk are 
calculated: 

 
           𝑦𝑦𝑘𝑘(𝑝𝑝) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[∑ 𝑥𝑥𝑗𝑗𝑗𝑗(𝑝𝑝) ∙ 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) − 𝜃𝜃𝑘𝑘)]𝑚𝑚

𝑗𝑗=1         (5) 
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where sigmoid denotes the sigmoid activation function, n refers 
to the number of inputs of neuron j in the hidden layer, p is the 
number of iteration and θ is the threshold. 

(b)The actual outputs of the neurons, in the output layer, yk are 
calculated: 
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where ax ,ay and az are the accelerometer 
readings for each axis and gx ,gy and gz are the 
gyroscope readings for each axis

F. Artificial Neural Network
A neural network was designed to detect falls 
and classify movement patterns. The neural 
network algorithm was created, trained, 
visualized, and simulated using the Neural 
Network Toolbox of MATLAB software. Then, 
the final form of the algorithm was converted 
into C-code before being uploaded to the 
microcontroller.
	 The training input pattern obtained from 
the sensors is given to the network input unit. 
The input pattern is propagated forward in the 
network from layer to layer until the output 
pattern is generated by the output layer. If the 
generated output pattern is different from the 
target output, the error will be determined and 
propagated backward through the network 
from the output layer to the input layer. The 
weights are adjusted as the error is propagated.
	 The three-layer network shown in Fig. 8 
is considered to derive the backpropagation 
learning law. Let the indices i, j, and k represent 
the neurons in the input, hidden and output 
layers, respectively. Generally, i indicates the 
number of input signals and k denotes the 
number of recognition patterns. x1, x2, x3 until 
xn are input signals which propagated forward 
through the network from the input layer to the 
output layer, and error signals, e1, e2, e3 until 
el, propagated backward from the output layer 
to the input layer. The symbol wij refers to the 
synaptic weight for the connection between 
neuron i in the input layer and neuron j in the 
hidden layer. The symbol wjk represents the 
synaptic weight between neuron j in the hidden 
layer and neuron k in the output layer.
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IMU module. The data are high-pass filtered with a second-
order Butterworth filter. The gyroscope data are prone to drift 
and the angle derived from angular velocity continues to change 
during integration even when the sensor is stationary. 
 During fall detection, the information on the acceleration or 
rotation of the body in any specific direction is less important. 
Rather, an aggregate that combines the 3-dimensional sensor 
outputs may be more suitable to be considered for the analysis. 
For this reason, vector magnitude is used as a data feature for 
feature extraction; the vector magnitude of acceleration and 
angular velocity can be calculated with the formula below: 
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Step 1: Initialization
The synaptic weights and threshold θ of 
the network are set randomly by constant 
distribution within a small range:
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where sigmoid denotes the sigmoid activation function, n refers 
to the number of inputs of neuron j in the hidden layer, p is the 
number of iteration and θ is the threshold. 

(b)The actual outputs of the neurons, in the output layer, yk are 
calculated: 
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where Fi represents the sum of the inputs of 
neuron i in the network. The weight is initialized 
based on a neuron-by-neuron basis.

Step 2: Activation
The back-propagation neural network is 
activated by putting in the inputs x₁(p), x₂(p), 
x₃(p), until xn(p) and target outputs yd,₁(p), 
yd,₂(p), yd,₃(p), until yd,n(p).
(a) The actual outputs of the neurons in the 
hidden layer, yj are calculated:
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where sigmoid denotes the sigmoid activation 
function, n refers to the number of inputs of 
neuron j in the hidden layer, p is the number of 
iteration and θ is the threshold.
(b)The actual outputs of the neurons, in the 
output layer, yk are calculated:
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E. Signal Processing 
 Signal processing of the signals from the GY80-IMU module 
such as transformation, filtering, and visualization will be 
performed using the Signal Processing Toolbox of MATLAB 
software. The Signal Processing Toolbox can be used for signal 
analysis in time, frequency, and time-frequency domains, 
patterns, and trend identification, feature extraction, and custom 
algorithm development and validation.  
 The signal data were filtered to reduce noise and compensate 
for gyroscope drift. In the latter case, a high-pass filter was 
applied to the acceleration and angular velocity data from the 
IMU module. The data are high-pass filtered with a second-
order Butterworth filter. The gyroscope data are prone to drift 
and the angle derived from angular velocity continues to change 
during integration even when the sensor is stationary. 
 During fall detection, the information on the acceleration or 
rotation of the body in any specific direction is less important. 
Rather, an aggregate that combines the 3-dimensional sensor 
outputs may be more suitable to be considered for the analysis. 
For this reason, vector magnitude is used as a data feature for 
feature extraction; the vector magnitude of acceleration and 
angular velocity can be calculated with the formula below: 
 

√𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑦𝑦2 + 𝑎𝑎𝑧𝑧2                   (1)

    
 

                              𝐺𝐺 = √𝑔𝑔𝑥𝑥2 + 𝑔𝑔𝑦𝑦2 + 𝑔𝑔𝑧𝑧2                            (2) 

 
where ax, ay and az are the accelerometer readings for each 
axis and gx, gy and gz are the gyroscope readings for each axis 
 

F. Artificial Neural Network 
A neural network was designed to detect falls and classify 

movement patterns. The neural network algorithm was created, 
trained, visualized, and simulated using the Neural Network 
Toolbox of MATLAB software. Then, the final form of the 
algorithm was converted into C-code before being uploaded to 
the microcontroller. 

The training input pattern obtained from the sensors is given 
to the network input unit. The input pattern is propagated 
forward in the network from layer to layer until the output 
pattern is generated by the output layer. If the generated output 
pattern is different from the target output, the error will be 
determined and propagated backward through the network from 
the output layer to the input layer. The weights are adjusted as 
the error is propagated. 

The three-layer network shown in Fig. 8 is considered to 
derive the backpropagation learning law. Let the indices i, j, and 
k represent the neurons in the input, hidden and output layers, 
respectively. Generally, 𝑖𝑖 indicates the number of input signals 
and k denotes the number of recognition patterns. x1, x2, x3 until 
xn are input signals which propagated forward through the 
network from the input layer to the output layer, and error 
signals, e1, e2, e3 until el, propagated backward from the output 
layer to the input layer. The symbol wij refers to the synaptic 
weight for the connection between neuron i in the input layer 

and neuron j in the hidden layer. The symbol wjk represents the 
synaptic weight between neuron j in the hidden layer and 
neuron k in the output layer. 

 

 
Fig. 8. Multilayer neural network structure 

 

 

Step 1: Initialization 

The synaptic weights and threshold θ of the network are set 
randomly by constant distribution within a small range: 

                                     (− 2.4
𝐹𝐹𝑖𝑖

, 2.4
𝐹𝐹𝐹𝐹 )                                     (3) 

 
where Fi represents the sum of the inputs of neuron i in the 
network. The weight is initialized based on a neuron-by-neuron 
basis. 
 
Step 2: Activation 
The back-propagation neural network is activated by putting in 
the inputs x1(p), x2(p), x3(p), until xn(p) and target outputs 
yd,1(p), yd,2(p), yd,3(p), until yd,n(p). 

(a) The actual outputs of the neurons in the hidden layer, yj are 
calculated: 
 
            𝑦𝑦𝑗𝑗(𝑝𝑝) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[∑ 𝑥𝑥𝑖𝑖(𝑝𝑝) ∙ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) − 𝜃𝜃𝑗𝑗)𝑛𝑛

𝑖𝑖=1 ]         (4) 

where sigmoid denotes the sigmoid activation function, n refers 
to the number of inputs of neuron j in the hidden layer, p is the 
number of iteration and θ is the threshold. 

(b)The actual outputs of the neurons, in the output layer, yk are 
calculated: 

 
           𝑦𝑦𝑘𝑘(𝑝𝑝) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[∑ 𝑥𝑥𝑗𝑗𝑗𝑗(𝑝𝑝) ∙ 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) − 𝜃𝜃𝑘𝑘)]𝑚𝑚

𝑗𝑗=1         (5) 
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and the angle derived from angular velocity continues to change 
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Rather, an aggregate that combines the 3-dimensional sensor 
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For this reason, vector magnitude is used as a data feature for 
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randomly by constant distribution within a small range: 
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where Fi represents the sum of the inputs of neuron i in the 
network. The weight is initialized based on a neuron-by-neuron 
basis. 
 
Step 2: Activation 
The back-propagation neural network is activated by putting in 
the inputs x1(p), x2(p), x3(p), until xn(p) and target outputs 
yd,1(p), yd,2(p), yd,3(p), until yd,n(p). 

(a) The actual outputs of the neurons in the hidden layer, yj are 
calculated: 
 
            𝑦𝑦𝑗𝑗(𝑝𝑝) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[∑ 𝑥𝑥𝑖𝑖(𝑝𝑝) ∙ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) − 𝜃𝜃𝑗𝑗)𝑛𝑛

𝑖𝑖=1 ]         (4) 

where sigmoid denotes the sigmoid activation function, n refers 
to the number of inputs of neuron j in the hidden layer, p is the 
number of iteration and θ is the threshold. 

(b)The actual outputs of the neurons, in the output layer, yk are 
calculated: 

 
           𝑦𝑦𝑘𝑘(𝑝𝑝) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[∑ 𝑥𝑥𝑗𝑗𝑗𝑗(𝑝𝑝) ∙ 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) − 𝜃𝜃𝑘𝑘)]𝑚𝑚

𝑗𝑗=1         (5) 

where m refers to the number of inputs of neuron 
k in the output layer and θ is the threshold.

Step 3: Weight training
The weights in the back-propagation network 
are updated propagating backwards the errors 
associated with output neurons.

(a) The error gradient, δk for the neurons in the 
output layer is calculated:
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where m refers to the number of inputs of neuron k in the output 
layer and θ is the threshold. 
 
Step 3: Weight training 
The weights in the back-propagation network are updated 
propagating backwards the errors associated with output 
neurons. 
 
(a) The error gradient, δk for the neurons in the output layer is 
calculated: 

 
                    𝛿𝛿𝑘𝑘(𝑝𝑝) = 𝑦𝑦𝑘𝑘(𝑝𝑝) ∙ {1 − 𝑦𝑦𝑘𝑘(𝑝𝑝)] ∙ 𝑒𝑒𝑘𝑘(𝑝𝑝)                 (6)  

                      
where 𝑒𝑒𝑘𝑘(𝑝𝑝) = 𝑦𝑦𝑑𝑑,𝑘𝑘(𝑝𝑝) − 𝑦𝑦𝑘𝑘(𝑝𝑝)and yd,k(p) denotes the target 
output of neuron k at iteration p. 
 
The weight corrections are calculated: 
 
                          ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) = 𝛼𝛼 ∙ 𝑦𝑦𝑗𝑗(𝑝𝑝) ∙ 𝛿𝛿𝑘𝑘(𝑝𝑝)                         (7) 
 
where yj represents the output of neuron j in the hidden layer, 
the symbol δk(p) denotes the error gradient at neuron k in the 
output layer at iteration p and α is the learning rate. 
 
The weights at the output neurons are updated: 
 
                     ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝 + 1) = 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) + ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)                    (8) 
 
(b) The error gradient for the neurons in the hidden layer is 
calculated: 
 
        𝛿𝛿𝑗𝑗(𝑝𝑝) = 𝑦𝑦𝑗𝑗(𝑝𝑝) ∙ [1 − 𝑦𝑦𝑗𝑗(𝑝𝑝)] ∙ ∑ 𝛿𝛿𝑘𝑘(𝑝𝑝) ∙ 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)𝑙𝑙

𝑘𝑘=1         (9) 

where l refers to the number of neurons in the output layer. 

The weight corrections are calculated: 
 
                           ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) = 𝛼𝛼 ∙ 𝑥𝑥𝑖𝑖(𝑝𝑝) ∙ 𝛿𝛿𝑗𝑗(𝑝𝑝)                      (10) 
 
The weights at the hidden neurons are calculated:        
   
                       ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝 + 1) = 𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) + ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝)                (11) 
  
Step 4: Iteration 
The iteration p is increased one by one and then return to Step 
2. The process is repeated until the selected error criterion is 
satisfied. 

III.  RESULTS AND DISCUSSION 
Firstly, the signal profiles from the accelerometers and 

gyroscopes for both ADL and fall events are presented in Fig. 9. 
Impulsive motions like jumping and running produce signals 
almost like a fall motion. This can cause false alarm in the 
detection system.   

Several experiments in a controlled environment were 
carried out to test and validate the performance and 
functionality of the system. The experiments aim to debug the 
program code, fine-tuning and improving the overall 
performance of the product. 

 These conducted tests are similar to the previous data 
collection experiments, where both fall activities and ADL 
activities simulation are performed by a group of volunteers. 
Fifteen volunteers are involved in testing this system. Every 
subject aged ranging from 18 to 40, height ranging from 160cm 
to 185cm, and weight ranging from 40kg to 90kg. The system 
is tested against four types of falls and five types of ADL 
activities. Each activity will be repeated three times by the 
subjects. Table 3 and Table 4 present the details of the 
evaluation test 1 and 2.  

 

TABLE 1 Evaluation Test 1 (ADL) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities Walking, sitting, running, 
jumping, lying down 

No. of times action repeated 3 times 

Total ADL performed (15x 5x3)=225 

 

TABLE 2 Evaluation Test 2 (Fall Activities) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities 
Fall forward, fall 

backwards, fall left, fall 
right 

No. of times action 
repeated 3 times 

Total Fall performed (15x4x3)=180 

  

 
(a) 
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where m refers to the number of inputs of neuron k in the output 
layer and θ is the threshold. 
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The weights in the back-propagation network are updated 
propagating backwards the errors associated with output 
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detection system.   

Several experiments in a controlled environment were 
carried out to test and validate the performance and 
functionality of the system. The experiments aim to debug the 
program code, fine-tuning and improving the overall 
performance of the product. 

 These conducted tests are similar to the previous data 
collection experiments, where both fall activities and ADL 
activities simulation are performed by a group of volunteers. 
Fifteen volunteers are involved in testing this system. Every 
subject aged ranging from 18 to 40, height ranging from 160cm 
to 185cm, and weight ranging from 40kg to 90kg. The system 
is tested against four types of falls and five types of ADL 
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evaluation test 1 and 2.  
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(a) 

                     
where ek(p) = yd,k(p) - yk(p) and yd,k(p) denotes the 
target output of neuron k at iteration p.

The weight corrections are calculated:
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where m refers to the number of inputs of neuron k in the output 
layer and θ is the threshold. 
 
Step 3: Weight training 
The weights in the back-propagation network are updated 
propagating backwards the errors associated with output 
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almost like a fall motion. This can cause false alarm in the 
detection system.   

Several experiments in a controlled environment were 
carried out to test and validate the performance and 
functionality of the system. The experiments aim to debug the 
program code, fine-tuning and improving the overall 
performance of the product. 

 These conducted tests are similar to the previous data 
collection experiments, where both fall activities and ADL 
activities simulation are performed by a group of volunteers. 
Fifteen volunteers are involved in testing this system. Every 
subject aged ranging from 18 to 40, height ranging from 160cm 
to 185cm, and weight ranging from 40kg to 90kg. The system 
is tested against four types of falls and five types of ADL 
activities. Each activity will be repeated three times by the 
subjects. Table 3 and Table 4 present the details of the 
evaluation test 1 and 2.  

 

TABLE 1 Evaluation Test 1 (ADL) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities Walking, sitting, running, 
jumping, lying down 

No. of times action repeated 3 times 

Total ADL performed (15x 5x3)=225 

 

TABLE 2 Evaluation Test 2 (Fall Activities) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities 
Fall forward, fall 

backwards, fall left, fall 
right 

No. of times action 
repeated 3 times 

Total Fall performed (15x4x3)=180 
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where m refers to the number of inputs of neuron k in the output 
layer and θ is the threshold. 
 
Step 3: Weight training 
The weights in the back-propagation network are updated 
propagating backwards the errors associated with output 
neurons. 
 
(a) The error gradient, δk for the neurons in the output layer is 
calculated: 

 
                    𝛿𝛿𝑘𝑘(𝑝𝑝) = 𝑦𝑦𝑘𝑘(𝑝𝑝) ∙ {1 − 𝑦𝑦𝑘𝑘(𝑝𝑝)] ∙ 𝑒𝑒𝑘𝑘(𝑝𝑝)                 (6)  

                      
where 𝑒𝑒𝑘𝑘(𝑝𝑝) = 𝑦𝑦𝑑𝑑,𝑘𝑘(𝑝𝑝) − 𝑦𝑦𝑘𝑘(𝑝𝑝)and yd,k(p) denotes the target 
output of neuron k at iteration p. 
 
The weight corrections are calculated: 
 
                          ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) = 𝛼𝛼 ∙ 𝑦𝑦𝑗𝑗(𝑝𝑝) ∙ 𝛿𝛿𝑘𝑘(𝑝𝑝)                         (7) 
 
where yj represents the output of neuron j in the hidden layer, 
the symbol δk(p) denotes the error gradient at neuron k in the 
output layer at iteration p and α is the learning rate. 
 
The weights at the output neurons are updated: 
 
                     ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝 + 1) = 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) + ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)                    (8) 
 
(b) The error gradient for the neurons in the hidden layer is 
calculated: 
 
        𝛿𝛿𝑗𝑗(𝑝𝑝) = 𝑦𝑦𝑗𝑗(𝑝𝑝) ∙ [1 − 𝑦𝑦𝑗𝑗(𝑝𝑝)] ∙ ∑ 𝛿𝛿𝑘𝑘(𝑝𝑝) ∙ 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)𝑙𝑙

𝑘𝑘=1         (9) 

where l refers to the number of neurons in the output layer. 

The weight corrections are calculated: 
 
                           ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) = 𝛼𝛼 ∙ 𝑥𝑥𝑖𝑖(𝑝𝑝) ∙ 𝛿𝛿𝑗𝑗(𝑝𝑝)                      (10) 
 
The weights at the hidden neurons are calculated:        
   
                       ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝 + 1) = 𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) + ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝)                (11) 
  
Step 4: Iteration 
The iteration p is increased one by one and then return to Step 
2. The process is repeated until the selected error criterion is 
satisfied. 

III.  RESULTS AND DISCUSSION 
Firstly, the signal profiles from the accelerometers and 

gyroscopes for both ADL and fall events are presented in Fig. 9. 
Impulsive motions like jumping and running produce signals 
almost like a fall motion. This can cause false alarm in the 
detection system.   

Several experiments in a controlled environment were 
carried out to test and validate the performance and 
functionality of the system. The experiments aim to debug the 
program code, fine-tuning and improving the overall 
performance of the product. 

 These conducted tests are similar to the previous data 
collection experiments, where both fall activities and ADL 
activities simulation are performed by a group of volunteers. 
Fifteen volunteers are involved in testing this system. Every 
subject aged ranging from 18 to 40, height ranging from 160cm 
to 185cm, and weight ranging from 40kg to 90kg. The system 
is tested against four types of falls and five types of ADL 
activities. Each activity will be repeated three times by the 
subjects. Table 3 and Table 4 present the details of the 
evaluation test 1 and 2.  

 

TABLE 1 Evaluation Test 1 (ADL) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities Walking, sitting, running, 
jumping, lying down 

No. of times action repeated 3 times 

Total ADL performed (15x 5x3)=225 

 

TABLE 2 Evaluation Test 2 (Fall Activities) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities 
Fall forward, fall 

backwards, fall left, fall 
right 

No. of times action 
repeated 3 times 

Total Fall performed (15x4x3)=180 

  

 
(a) 

where yj represents the output of neuron j in 
the hidden layer, the symbol δk(p) denotes the 
error gradient at neuron k in the output layer at 
iteration p and α is the learning rate.

The weights at the output neurons are updated:
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Step 3: Weight training 
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Step 4: Iteration 
The iteration p is increased one by one and then return to Step 
2. The process is repeated until the selected error criterion is 
satisfied. 

III.  RESULTS AND DISCUSSION 
Firstly, the signal profiles from the accelerometers and 

gyroscopes for both ADL and fall events are presented in Fig. 9. 
Impulsive motions like jumping and running produce signals 
almost like a fall motion. This can cause false alarm in the 
detection system.   

Several experiments in a controlled environment were 
carried out to test and validate the performance and 
functionality of the system. The experiments aim to debug the 
program code, fine-tuning and improving the overall 
performance of the product. 

 These conducted tests are similar to the previous data 
collection experiments, where both fall activities and ADL 
activities simulation are performed by a group of volunteers. 
Fifteen volunteers are involved in testing this system. Every 
subject aged ranging from 18 to 40, height ranging from 160cm 
to 185cm, and weight ranging from 40kg to 90kg. The system 
is tested against four types of falls and five types of ADL 
activities. Each activity will be repeated three times by the 
subjects. Table 3 and Table 4 present the details of the 
evaluation test 1 and 2.  

 

TABLE 1 Evaluation Test 1 (ADL) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities Walking, sitting, running, 
jumping, lying down 

No. of times action repeated 3 times 

Total ADL performed (15x 5x3)=225 
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where m refers to the number of inputs of neuron k in the output 
layer and θ is the threshold. 
 
Step 3: Weight training 
The weights in the back-propagation network are updated 
propagating backwards the errors associated with output 
neurons. 
 
(a) The error gradient, δk for the neurons in the output layer is 
calculated: 
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where yj represents the output of neuron j in the hidden layer, 
the symbol δk(p) denotes the error gradient at neuron k in the 
output layer at iteration p and α is the learning rate. 
 
The weights at the output neurons are updated: 
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calculated: 
 
        𝛿𝛿𝑗𝑗(𝑝𝑝) = 𝑦𝑦𝑗𝑗(𝑝𝑝) ∙ [1 − 𝑦𝑦𝑗𝑗(𝑝𝑝)] ∙ ∑ 𝛿𝛿𝑘𝑘(𝑝𝑝) ∙ 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)𝑙𝑙
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where l refers to the number of neurons in the output layer. 

The weight corrections are calculated: 
 
                           ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) = 𝛼𝛼 ∙ 𝑥𝑥𝑖𝑖(𝑝𝑝) ∙ 𝛿𝛿𝑗𝑗(𝑝𝑝)                      (10) 
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Step 4: Iteration 
The iteration p is increased one by one and then return to Step 
2. The process is repeated until the selected error criterion is 
satisfied. 

III.  RESULTS AND DISCUSSION 
Firstly, the signal profiles from the accelerometers and 

gyroscopes for both ADL and fall events are presented in Fig. 9. 
Impulsive motions like jumping and running produce signals 
almost like a fall motion. This can cause false alarm in the 
detection system.   

Several experiments in a controlled environment were 
carried out to test and validate the performance and 
functionality of the system. The experiments aim to debug the 
program code, fine-tuning and improving the overall 
performance of the product. 

 These conducted tests are similar to the previous data 
collection experiments, where both fall activities and ADL 
activities simulation are performed by a group of volunteers. 
Fifteen volunteers are involved in testing this system. Every 
subject aged ranging from 18 to 40, height ranging from 160cm 
to 185cm, and weight ranging from 40kg to 90kg. The system 
is tested against four types of falls and five types of ADL 
activities. Each activity will be repeated three times by the 
subjects. Table 3 and Table 4 present the details of the 
evaluation test 1 and 2.  

 

TABLE 1 Evaluation Test 1 (ADL) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities Walking, sitting, running, 
jumping, lying down 

No. of times action repeated 3 times 

Total ADL performed (15x 5x3)=225 

 

TABLE 2 Evaluation Test 2 (Fall Activities) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 
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Fall forward, fall 

backwards, fall left, fall 
right 

No. of times action 
repeated 3 times 

Total Fall performed (15x4x3)=180 

  

 
(a) 

(b) The error gradient for the neurons in the 
hidden layer is calculated:
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where m refers to the number of inputs of neuron k in the output 
layer and θ is the threshold. 
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The weights in the back-propagation network are updated 
propagating backwards the errors associated with output 
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output layer at iteration p and α is the learning rate. 
 
The weights at the output neurons are updated: 
 
                     ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝 + 1) = 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) + ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)                    (8) 
 
(b) The error gradient for the neurons in the hidden layer is 
calculated: 
 
        𝛿𝛿𝑗𝑗(𝑝𝑝) = 𝑦𝑦𝑗𝑗(𝑝𝑝) ∙ [1 − 𝑦𝑦𝑗𝑗(𝑝𝑝)] ∙ ∑ 𝛿𝛿𝑘𝑘(𝑝𝑝) ∙ 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)𝑙𝑙

𝑘𝑘=1         (9) 

where l refers to the number of neurons in the output layer. 

The weight corrections are calculated: 
 
                           ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) = 𝛼𝛼 ∙ 𝑥𝑥𝑖𝑖(𝑝𝑝) ∙ 𝛿𝛿𝑗𝑗(𝑝𝑝)                      (10) 
 
The weights at the hidden neurons are calculated:        
   
                       ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝 + 1) = 𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) + ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝)                (11) 
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2. The process is repeated until the selected error criterion is 
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III.  RESULTS AND DISCUSSION 
Firstly, the signal profiles from the accelerometers and 

gyroscopes for both ADL and fall events are presented in Fig. 9. 
Impulsive motions like jumping and running produce signals 
almost like a fall motion. This can cause false alarm in the 
detection system.   

Several experiments in a controlled environment were 
carried out to test and validate the performance and 
functionality of the system. The experiments aim to debug the 
program code, fine-tuning and improving the overall 
performance of the product. 

 These conducted tests are similar to the previous data 
collection experiments, where both fall activities and ADL 
activities simulation are performed by a group of volunteers. 
Fifteen volunteers are involved in testing this system. Every 
subject aged ranging from 18 to 40, height ranging from 160cm 
to 185cm, and weight ranging from 40kg to 90kg. The system 
is tested against four types of falls and five types of ADL 
activities. Each activity will be repeated three times by the 
subjects. Table 3 and Table 4 present the details of the 
evaluation test 1 and 2.  

 

TABLE 1 Evaluation Test 1 (ADL) 

Subjects 15 
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The weights in the back-propagation network are updated 
propagating backwards the errors associated with output 
neurons. 
 
(a) The error gradient, δk for the neurons in the output layer is 
calculated: 

 
                    𝛿𝛿𝑘𝑘(𝑝𝑝) = 𝑦𝑦𝑘𝑘(𝑝𝑝) ∙ {1 − 𝑦𝑦𝑘𝑘(𝑝𝑝)] ∙ 𝑒𝑒𝑘𝑘(𝑝𝑝)                 (6)  

                      
where 𝑒𝑒𝑘𝑘(𝑝𝑝) = 𝑦𝑦𝑑𝑑,𝑘𝑘(𝑝𝑝) − 𝑦𝑦𝑘𝑘(𝑝𝑝)and yd,k(p) denotes the target 
output of neuron k at iteration p. 
 
The weight corrections are calculated: 
 
                          ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) = 𝛼𝛼 ∙ 𝑦𝑦𝑗𝑗(𝑝𝑝) ∙ 𝛿𝛿𝑘𝑘(𝑝𝑝)                         (7) 
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                           ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) = 𝛼𝛼 ∙ 𝑥𝑥𝑖𝑖(𝑝𝑝) ∙ 𝛿𝛿𝑗𝑗(𝑝𝑝)                      (10) 
 
The weights at the hidden neurons are calculated:        
   
                       ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝 + 1) = 𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) + ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝)                (11) 
  
Step 4: Iteration 
The iteration p is increased one by one and then return to Step 
2. The process is repeated until the selected error criterion is 
satisfied. 

III.  RESULTS AND DISCUSSION 
Firstly, the signal profiles from the accelerometers and 

gyroscopes for both ADL and fall events are presented in Fig. 9. 
Impulsive motions like jumping and running produce signals 
almost like a fall motion. This can cause false alarm in the 
detection system.   

Several experiments in a controlled environment were 
carried out to test and validate the performance and 
functionality of the system. The experiments aim to debug the 
program code, fine-tuning and improving the overall 
performance of the product. 

 These conducted tests are similar to the previous data 
collection experiments, where both fall activities and ADL 
activities simulation are performed by a group of volunteers. 
Fifteen volunteers are involved in testing this system. Every 
subject aged ranging from 18 to 40, height ranging from 160cm 
to 185cm, and weight ranging from 40kg to 90kg. The system 
is tested against four types of falls and five types of ADL 
activities. Each activity will be repeated three times by the 
subjects. Table 3 and Table 4 present the details of the 
evaluation test 1 and 2.  

 

TABLE 1 Evaluation Test 1 (ADL) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities Walking, sitting, running, 
jumping, lying down 

No. of times action repeated 3 times 

Total ADL performed (15x 5x3)=225 

 

TABLE 2 Evaluation Test 2 (Fall Activities) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities 
Fall forward, fall 

backwards, fall left, fall 
right 

No. of times action 
repeated 3 times 

Total Fall performed (15x4x3)=180 

  

 
(a) 

where l refers to the number of neurons in the 
output layer.
The weight corrections are calculated:
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where m refers to the number of inputs of neuron k in the output 
layer and θ is the threshold. 
 
Step 3: Weight training 
The weights in the back-propagation network are updated 
propagating backwards the errors associated with output 
neurons. 
 
(a) The error gradient, δk for the neurons in the output layer is 
calculated: 

 
                    𝛿𝛿𝑘𝑘(𝑝𝑝) = 𝑦𝑦𝑘𝑘(𝑝𝑝) ∙ {1 − 𝑦𝑦𝑘𝑘(𝑝𝑝)] ∙ 𝑒𝑒𝑘𝑘(𝑝𝑝)                 (6)  

                      
where 𝑒𝑒𝑘𝑘(𝑝𝑝) = 𝑦𝑦𝑑𝑑,𝑘𝑘(𝑝𝑝) − 𝑦𝑦𝑘𝑘(𝑝𝑝)and yd,k(p) denotes the target 
output of neuron k at iteration p. 
 
The weight corrections are calculated: 
 
                          ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) = 𝛼𝛼 ∙ 𝑦𝑦𝑗𝑗(𝑝𝑝) ∙ 𝛿𝛿𝑘𝑘(𝑝𝑝)                         (7) 
 
where yj represents the output of neuron j in the hidden layer, 
the symbol δk(p) denotes the error gradient at neuron k in the 
output layer at iteration p and α is the learning rate. 
 
The weights at the output neurons are updated: 
 
                     ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝 + 1) = 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) + ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)                    (8) 
 
(b) The error gradient for the neurons in the hidden layer is 
calculated: 
 
        𝛿𝛿𝑗𝑗(𝑝𝑝) = 𝑦𝑦𝑗𝑗(𝑝𝑝) ∙ [1 − 𝑦𝑦𝑗𝑗(𝑝𝑝)] ∙ ∑ 𝛿𝛿𝑘𝑘(𝑝𝑝) ∙ 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)𝑙𝑙

𝑘𝑘=1         (9) 

where l refers to the number of neurons in the output layer. 

The weight corrections are calculated: 
 
                           ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) = 𝛼𝛼 ∙ 𝑥𝑥𝑖𝑖(𝑝𝑝) ∙ 𝛿𝛿𝑗𝑗(𝑝𝑝)                      (10) 
 
The weights at the hidden neurons are calculated:        
   
                       ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝 + 1) = 𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) + ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝)                (11) 
  
Step 4: Iteration 
The iteration p is increased one by one and then return to Step 
2. The process is repeated until the selected error criterion is 
satisfied. 

III.  RESULTS AND DISCUSSION 
Firstly, the signal profiles from the accelerometers and 

gyroscopes for both ADL and fall events are presented in Fig. 9. 
Impulsive motions like jumping and running produce signals 
almost like a fall motion. This can cause false alarm in the 
detection system.   

Several experiments in a controlled environment were 
carried out to test and validate the performance and 
functionality of the system. The experiments aim to debug the 
program code, fine-tuning and improving the overall 
performance of the product. 

 These conducted tests are similar to the previous data 
collection experiments, where both fall activities and ADL 
activities simulation are performed by a group of volunteers. 
Fifteen volunteers are involved in testing this system. Every 
subject aged ranging from 18 to 40, height ranging from 160cm 
to 185cm, and weight ranging from 40kg to 90kg. The system 
is tested against four types of falls and five types of ADL 
activities. Each activity will be repeated three times by the 
subjects. Table 3 and Table 4 present the details of the 
evaluation test 1 and 2.  

 

TABLE 1 Evaluation Test 1 (ADL) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities Walking, sitting, running, 
jumping, lying down 

No. of times action repeated 3 times 

Total ADL performed (15x 5x3)=225 

 

TABLE 2 Evaluation Test 2 (Fall Activities) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities 
Fall forward, fall 

backwards, fall left, fall 
right 

No. of times action 
repeated 3 times 

Total Fall performed (15x4x3)=180 
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where m refers to the number of inputs of neuron k in the output 
layer and θ is the threshold. 
 
Step 3: Weight training 
The weights in the back-propagation network are updated 
propagating backwards the errors associated with output 
neurons. 
 
(a) The error gradient, δk for the neurons in the output layer is 
calculated: 

 
                    𝛿𝛿𝑘𝑘(𝑝𝑝) = 𝑦𝑦𝑘𝑘(𝑝𝑝) ∙ {1 − 𝑦𝑦𝑘𝑘(𝑝𝑝)] ∙ 𝑒𝑒𝑘𝑘(𝑝𝑝)                 (6)  

                      
where 𝑒𝑒𝑘𝑘(𝑝𝑝) = 𝑦𝑦𝑑𝑑,𝑘𝑘(𝑝𝑝) − 𝑦𝑦𝑘𝑘(𝑝𝑝)and yd,k(p) denotes the target 
output of neuron k at iteration p. 
 
The weight corrections are calculated: 
 
                          ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) = 𝛼𝛼 ∙ 𝑦𝑦𝑗𝑗(𝑝𝑝) ∙ 𝛿𝛿𝑘𝑘(𝑝𝑝)                         (7) 
 
where yj represents the output of neuron j in the hidden layer, 
the symbol δk(p) denotes the error gradient at neuron k in the 
output layer at iteration p and α is the learning rate. 
 
The weights at the output neurons are updated: 
 
                     ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝 + 1) = 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) + ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)                    (8) 
 
(b) The error gradient for the neurons in the hidden layer is 
calculated: 
 
        𝛿𝛿𝑗𝑗(𝑝𝑝) = 𝑦𝑦𝑗𝑗(𝑝𝑝) ∙ [1 − 𝑦𝑦𝑗𝑗(𝑝𝑝)] ∙ ∑ 𝛿𝛿𝑘𝑘(𝑝𝑝) ∙ 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)𝑙𝑙

𝑘𝑘=1         (9) 

where l refers to the number of neurons in the output layer. 

The weight corrections are calculated: 
 
                           ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) = 𝛼𝛼 ∙ 𝑥𝑥𝑖𝑖(𝑝𝑝) ∙ 𝛿𝛿𝑗𝑗(𝑝𝑝)                      (10) 
 
The weights at the hidden neurons are calculated:        
   
                       ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝 + 1) = 𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) + ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝)                (11) 
  
Step 4: Iteration 
The iteration p is increased one by one and then return to Step 
2. The process is repeated until the selected error criterion is 
satisfied. 

III.  RESULTS AND DISCUSSION 
Firstly, the signal profiles from the accelerometers and 

gyroscopes for both ADL and fall events are presented in Fig. 9. 
Impulsive motions like jumping and running produce signals 
almost like a fall motion. This can cause false alarm in the 
detection system.   

Several experiments in a controlled environment were 
carried out to test and validate the performance and 
functionality of the system. The experiments aim to debug the 
program code, fine-tuning and improving the overall 
performance of the product. 

 These conducted tests are similar to the previous data 
collection experiments, where both fall activities and ADL 
activities simulation are performed by a group of volunteers. 
Fifteen volunteers are involved in testing this system. Every 
subject aged ranging from 18 to 40, height ranging from 160cm 
to 185cm, and weight ranging from 40kg to 90kg. The system 
is tested against four types of falls and five types of ADL 
activities. Each activity will be repeated three times by the 
subjects. Table 3 and Table 4 present the details of the 
evaluation test 1 and 2.  

 

TABLE 1 Evaluation Test 1 (ADL) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities Walking, sitting, running, 
jumping, lying down 

No. of times action repeated 3 times 

Total ADL performed (15x 5x3)=225 

 

TABLE 2 Evaluation Test 2 (Fall Activities) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities 
Fall forward, fall 

backwards, fall left, fall 
right 

No. of times action 
repeated 3 times 

Total Fall performed (15x4x3)=180 

  

 
(a) 

The weights at the hidden neurons are 
calculated:       
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where m refers to the number of inputs of neuron k in the output 
layer and θ is the threshold. 
 
Step 3: Weight training 
The weights in the back-propagation network are updated 
propagating backwards the errors associated with output 
neurons. 
 
(a) The error gradient, δk for the neurons in the output layer is 
calculated: 

 
                    𝛿𝛿𝑘𝑘(𝑝𝑝) = 𝑦𝑦𝑘𝑘(𝑝𝑝) ∙ {1 − 𝑦𝑦𝑘𝑘(𝑝𝑝)] ∙ 𝑒𝑒𝑘𝑘(𝑝𝑝)                 (6)  

                      
where 𝑒𝑒𝑘𝑘(𝑝𝑝) = 𝑦𝑦𝑑𝑑,𝑘𝑘(𝑝𝑝) − 𝑦𝑦𝑘𝑘(𝑝𝑝)and yd,k(p) denotes the target 
output of neuron k at iteration p. 
 
The weight corrections are calculated: 
 
                          ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) = 𝛼𝛼 ∙ 𝑦𝑦𝑗𝑗(𝑝𝑝) ∙ 𝛿𝛿𝑘𝑘(𝑝𝑝)                         (7) 
 
where yj represents the output of neuron j in the hidden layer, 
the symbol δk(p) denotes the error gradient at neuron k in the 
output layer at iteration p and α is the learning rate. 
 
The weights at the output neurons are updated: 
 
                     ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝 + 1) = 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) + ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)                    (8) 
 
(b) The error gradient for the neurons in the hidden layer is 
calculated: 
 
        𝛿𝛿𝑗𝑗(𝑝𝑝) = 𝑦𝑦𝑗𝑗(𝑝𝑝) ∙ [1 − 𝑦𝑦𝑗𝑗(𝑝𝑝)] ∙ ∑ 𝛿𝛿𝑘𝑘(𝑝𝑝) ∙ 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)𝑙𝑙

𝑘𝑘=1         (9) 

where l refers to the number of neurons in the output layer. 

The weight corrections are calculated: 
 
                           ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) = 𝛼𝛼 ∙ 𝑥𝑥𝑖𝑖(𝑝𝑝) ∙ 𝛿𝛿𝑗𝑗(𝑝𝑝)                      (10) 
 
The weights at the hidden neurons are calculated:        
   
                       ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝 + 1) = 𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) + ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝)                (11) 
  
Step 4: Iteration 
The iteration p is increased one by one and then return to Step 
2. The process is repeated until the selected error criterion is 
satisfied. 

III.  RESULTS AND DISCUSSION 
Firstly, the signal profiles from the accelerometers and 

gyroscopes for both ADL and fall events are presented in Fig. 9. 
Impulsive motions like jumping and running produce signals 
almost like a fall motion. This can cause false alarm in the 
detection system.   

Several experiments in a controlled environment were 
carried out to test and validate the performance and 
functionality of the system. The experiments aim to debug the 
program code, fine-tuning and improving the overall 
performance of the product. 

 These conducted tests are similar to the previous data 
collection experiments, where both fall activities and ADL 
activities simulation are performed by a group of volunteers. 
Fifteen volunteers are involved in testing this system. Every 
subject aged ranging from 18 to 40, height ranging from 160cm 
to 185cm, and weight ranging from 40kg to 90kg. The system 
is tested against four types of falls and five types of ADL 
activities. Each activity will be repeated three times by the 
subjects. Table 3 and Table 4 present the details of the 
evaluation test 1 and 2.  

 

TABLE 1 Evaluation Test 1 (ADL) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities Walking, sitting, running, 
jumping, lying down 

No. of times action repeated 3 times 

Total ADL performed (15x 5x3)=225 

 

TABLE 2 Evaluation Test 2 (Fall Activities) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities 
Fall forward, fall 

backwards, fall left, fall 
right 

No. of times action 
repeated 3 times 

Total Fall performed (15x4x3)=180 
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where m refers to the number of inputs of neuron k in the output 
layer and θ is the threshold. 
 
Step 3: Weight training 
The weights in the back-propagation network are updated 
propagating backwards the errors associated with output 
neurons. 
 
(a) The error gradient, δk for the neurons in the output layer is 
calculated: 

 
                    𝛿𝛿𝑘𝑘(𝑝𝑝) = 𝑦𝑦𝑘𝑘(𝑝𝑝) ∙ {1 − 𝑦𝑦𝑘𝑘(𝑝𝑝)] ∙ 𝑒𝑒𝑘𝑘(𝑝𝑝)                 (6)  

                      
where 𝑒𝑒𝑘𝑘(𝑝𝑝) = 𝑦𝑦𝑑𝑑,𝑘𝑘(𝑝𝑝) − 𝑦𝑦𝑘𝑘(𝑝𝑝)and yd,k(p) denotes the target 
output of neuron k at iteration p. 
 
The weight corrections are calculated: 
 
                          ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) = 𝛼𝛼 ∙ 𝑦𝑦𝑗𝑗(𝑝𝑝) ∙ 𝛿𝛿𝑘𝑘(𝑝𝑝)                         (7) 
 
where yj represents the output of neuron j in the hidden layer, 
the symbol δk(p) denotes the error gradient at neuron k in the 
output layer at iteration p and α is the learning rate. 
 
The weights at the output neurons are updated: 
 
                     ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝 + 1) = 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) + ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)                    (8) 
 
(b) The error gradient for the neurons in the hidden layer is 
calculated: 
 
        𝛿𝛿𝑗𝑗(𝑝𝑝) = 𝑦𝑦𝑗𝑗(𝑝𝑝) ∙ [1 − 𝑦𝑦𝑗𝑗(𝑝𝑝)] ∙ ∑ 𝛿𝛿𝑘𝑘(𝑝𝑝) ∙ 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)𝑙𝑙

𝑘𝑘=1         (9) 

where l refers to the number of neurons in the output layer. 

The weight corrections are calculated: 
 
                           ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) = 𝛼𝛼 ∙ 𝑥𝑥𝑖𝑖(𝑝𝑝) ∙ 𝛿𝛿𝑗𝑗(𝑝𝑝)                      (10) 
 
The weights at the hidden neurons are calculated:        
   
                       ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝 + 1) = 𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) + ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝)                (11) 
  
Step 4: Iteration 
The iteration p is increased one by one and then return to Step 
2. The process is repeated until the selected error criterion is 
satisfied. 

III.  RESULTS AND DISCUSSION 
Firstly, the signal profiles from the accelerometers and 

gyroscopes for both ADL and fall events are presented in Fig. 9. 
Impulsive motions like jumping and running produce signals 
almost like a fall motion. This can cause false alarm in the 
detection system.   

Several experiments in a controlled environment were 
carried out to test and validate the performance and 
functionality of the system. The experiments aim to debug the 
program code, fine-tuning and improving the overall 
performance of the product. 

 These conducted tests are similar to the previous data 
collection experiments, where both fall activities and ADL 
activities simulation are performed by a group of volunteers. 
Fifteen volunteers are involved in testing this system. Every 
subject aged ranging from 18 to 40, height ranging from 160cm 
to 185cm, and weight ranging from 40kg to 90kg. The system 
is tested against four types of falls and five types of ADL 
activities. Each activity will be repeated three times by the 
subjects. Table 3 and Table 4 present the details of the 
evaluation test 1 and 2.  

 

TABLE 1 Evaluation Test 1 (ADL) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities Walking, sitting, running, 
jumping, lying down 

No. of times action repeated 3 times 

Total ADL performed (15x 5x3)=225 

 

TABLE 2 Evaluation Test 2 (Fall Activities) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities 
Fall forward, fall 

backwards, fall left, fall 
right 

No. of times action 
repeated 3 times 

Total Fall performed (15x4x3)=180 

  

 
(a) 

Step 4: Iteration
The iteration p is increased one by one and then 
return to Step 2. The process is repeated until 
the selected error criterion is satisfied.
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II. RESULTS AND DISCUSSION
Firstly, the signal profiles from the 
accelerometers and gyroscopes for both ADL 
and fall events are presented in Fig. 9. Impulsive 
motions like jumping and running produce 
signals almost like a fall motion. This can cause 
false alarm in the detection system.  
	 Several experiments in a controlled 
environment were carried out to test and 
validate the performance and functionality of 
the system. The experiments aim to debug the 
program code, fine-tuning and improving the 
overall performance of the product.
	 These conducted tests are similar to the 
previous data collection experiments, where 
both fall activities and ADL activities simulation 
are performed by a group of volunteers. Fifteen 
volunteers are involved in testing this system. 
Every subject aged ranging from 18 to 40, height 
ranging from 160cm to 185cm, and weight 
ranging from 40kg to 90kg. The system is tested 
against four types of falls and five types of 
ADL activities. Each activity will be repeated 
three times by the subjects. Table 3 and Table 4 
present the details of the evaluation test 1 and 2. 
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where m refers to the number of inputs of neuron k in the output 
layer and θ is the threshold. 
 
Step 3: Weight training 
The weights in the back-propagation network are updated 
propagating backwards the errors associated with output 
neurons. 
 
(a) The error gradient, δk for the neurons in the output layer is 
calculated: 

 
                    𝛿𝛿𝑘𝑘(𝑝𝑝) = 𝑦𝑦𝑘𝑘(𝑝𝑝) ∙ {1 − 𝑦𝑦𝑘𝑘(𝑝𝑝)] ∙ 𝑒𝑒𝑘𝑘(𝑝𝑝)                 (6)  

                      
where 𝑒𝑒𝑘𝑘(𝑝𝑝) = 𝑦𝑦𝑑𝑑,𝑘𝑘(𝑝𝑝) − 𝑦𝑦𝑘𝑘(𝑝𝑝)and yd,k(p) denotes the target 
output of neuron k at iteration p. 
 
The weight corrections are calculated: 
 
                          ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) = 𝛼𝛼 ∙ 𝑦𝑦𝑗𝑗(𝑝𝑝) ∙ 𝛿𝛿𝑘𝑘(𝑝𝑝)                         (7) 
 
where yj represents the output of neuron j in the hidden layer, 
the symbol δk(p) denotes the error gradient at neuron k in the 
output layer at iteration p and α is the learning rate. 
 
The weights at the output neurons are updated: 
 
                     ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝 + 1) = 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝) + ∆𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)                    (8) 
 
(b) The error gradient for the neurons in the hidden layer is 
calculated: 
 
        𝛿𝛿𝑗𝑗(𝑝𝑝) = 𝑦𝑦𝑗𝑗(𝑝𝑝) ∙ [1 − 𝑦𝑦𝑗𝑗(𝑝𝑝)] ∙ ∑ 𝛿𝛿𝑘𝑘(𝑝𝑝) ∙ 𝑤𝑤𝑗𝑗𝑗𝑗(𝑝𝑝)𝑙𝑙

𝑘𝑘=1         (9) 

where l refers to the number of neurons in the output layer. 

The weight corrections are calculated: 
 
                           ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) = 𝛼𝛼 ∙ 𝑥𝑥𝑖𝑖(𝑝𝑝) ∙ 𝛿𝛿𝑗𝑗(𝑝𝑝)                      (10) 
 
The weights at the hidden neurons are calculated:        
   
                       ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝 + 1) = 𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝) + ∆𝑤𝑤𝑖𝑖𝑖𝑖(𝑝𝑝)                (11) 
  
Step 4: Iteration 
The iteration p is increased one by one and then return to Step 
2. The process is repeated until the selected error criterion is 
satisfied. 

III.  RESULTS AND DISCUSSION 
Firstly, the signal profiles from the accelerometers and 

gyroscopes for both ADL and fall events are presented in Fig. 9. 
Impulsive motions like jumping and running produce signals 
almost like a fall motion. This can cause false alarm in the 
detection system.   

Several experiments in a controlled environment were 
carried out to test and validate the performance and 
functionality of the system. The experiments aim to debug the 
program code, fine-tuning and improving the overall 
performance of the product. 

 These conducted tests are similar to the previous data 
collection experiments, where both fall activities and ADL 
activities simulation are performed by a group of volunteers. 
Fifteen volunteers are involved in testing this system. Every 
subject aged ranging from 18 to 40, height ranging from 160cm 
to 185cm, and weight ranging from 40kg to 90kg. The system 
is tested against four types of falls and five types of ADL 
activities. Each activity will be repeated three times by the 
subjects. Table 3 and Table 4 present the details of the 
evaluation test 1 and 2.  

 

TABLE 1 Evaluation Test 1 (ADL) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities Walking, sitting, running, 
jumping, lying down 

No. of times action repeated 3 times 

Total ADL performed (15x 5x3)=225 

 

TABLE 2 Evaluation Test 2 (Fall Activities) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities 
Fall forward, fall 

backwards, fall left, fall 
right 

No. of times action 
repeated 3 times 

Total Fall performed (15x4x3)=180 
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2. The process is repeated until the selected error criterion is 
satisfied. 

III.  RESULTS AND DISCUSSION 
Firstly, the signal profiles from the accelerometers and 

gyroscopes for both ADL and fall events are presented in Fig. 9. 
Impulsive motions like jumping and running produce signals 
almost like a fall motion. This can cause false alarm in the 
detection system.   

Several experiments in a controlled environment were 
carried out to test and validate the performance and 
functionality of the system. The experiments aim to debug the 
program code, fine-tuning and improving the overall 
performance of the product. 

 These conducted tests are similar to the previous data 
collection experiments, where both fall activities and ADL 
activities simulation are performed by a group of volunteers. 
Fifteen volunteers are involved in testing this system. Every 
subject aged ranging from 18 to 40, height ranging from 160cm 
to 185cm, and weight ranging from 40kg to 90kg. The system 
is tested against four types of falls and five types of ADL 
activities. Each activity will be repeated three times by the 
subjects. Table 3 and Table 4 present the details of the 
evaluation test 1 and 2.  
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Step 4: Iteration 
The iteration p is increased one by one and then return to Step 
2. The process is repeated until the selected error criterion is 
satisfied. 

III.  RESULTS AND DISCUSSION 
Firstly, the signal profiles from the accelerometers and 

gyroscopes for both ADL and fall events are presented in Fig. 9. 
Impulsive motions like jumping and running produce signals 
almost like a fall motion. This can cause false alarm in the 
detection system.   

Several experiments in a controlled environment were 
carried out to test and validate the performance and 
functionality of the system. The experiments aim to debug the 
program code, fine-tuning and improving the overall 
performance of the product. 

 These conducted tests are similar to the previous data 
collection experiments, where both fall activities and ADL 
activities simulation are performed by a group of volunteers. 
Fifteen volunteers are involved in testing this system. Every 
subject aged ranging from 18 to 40, height ranging from 160cm 
to 185cm, and weight ranging from 40kg to 90kg. The system 
is tested against four types of falls and five types of ADL 
activities. Each activity will be repeated three times by the 
subjects. Table 3 and Table 4 present the details of the 
evaluation test 1 and 2.  

 

TABLE 1 Evaluation Test 1 (ADL) 

Subjects 15 

Ages 18-40 

Heights 160-185cm 

Activities Walking, sitting, running, 
jumping, lying down 

No. of times action repeated 3 times 

Total ADL performed (15x 5x3)=225 

 

TABLE 2 Evaluation Test 2 (Fall Activities) 
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Fig. 9. Sensor signal vs time for (a) ADL accelerometers, (b) ADL 
gyro (c) a fall event from accelerometers, and (d) a fall event from 

gyro 

The results of the experiments are categorized based on the 
four possible conditions. The numbers of occurrences for the 
four conditions are used for the calculations of the accuracy, 
sensitivity, and specificity of the fall detection algorithm. The 
four possible conditions for the output of the system are 
presented below:  

• True Positive (TP): the system successfully detects 
the presence of fall 

• False Positive (FP): the system detects a fall, although 
a fall did not occur; 

• True Negative (TN): activity of daily livings (ADL) 
or non-fall movement is performed and the system 
does not notify as a fall 

• False Negative (FN): the system does not announce a 
fall although a fall occurs. 

The sensitivity, specificity, and accuracy of results are 
presented to evaluate the performances of the developed 
system: 

Sensitivity represents the ability of the system to detect falls, 
100% denoting that all falls are detected. 

                      𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                             (12) 

Specificity is the capacity to only detect falls and ignore non-
fall events, 100% denoting that no false alarms are announced. 

                               𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹                        (13)  

Accuracy is related to the proportion of true results among the 
population, 100% accuracy denoting 100% sensitivity and 
specificity. 

                   𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹                  （14） 

Table 5 shows the results of the evaluation test. In general, 
different motions produce different patterns of signals, which 
can be used for the classification of fall events. However, the 
collected signal from the accelerometer and gyroscope are 
contaminated with noise due to intrinsic and environmental 
factors.  Therefore, a filtering process must be applied to the 
collected data before applying the fall detection algorithm. 

 
TABLE 3 Validation Results 

Total Falls 180 Total ADL 225 
True 

Positive 
(TP) 

173 True Negative 
(TN) 217 

False 
Negative 

(FN) 
7 

False Positive 
(FP) 

 
8 

Sensitivity: 95.5% 

Specificity:96.4% 

Accuracy:96.3% 

 
By applying the neural network, it is possible to accurately 

classify fall events and other fall-like activities, which are 
difficult to distinguish using the threshold method. Due to the 
similarity of the signal profile, the ADL motion like jumping 
and running are most likely to produce False Positive results. 
The accuracy of the neural network system can be improved by 
including more input patterns in the training phase.  

 

IV. CONCLUSION 
 This paper proposed a human fall detection system designed 
using a neural network. As the experimental results indicate, the 
proposed fall detection method can detect and distinguish 
between the falling activities and ADL with high sensitivity, 

Fig. 9. Sensor signal vs time for (a) ADL accelerometers, (b) 
ADL gyro (c) a fall event from accelerometers, and (d) a fall 

event from gyro

	 The results of the experiments are 
categorized based on the four possible 
conditions. The numbers of occurrences for the 
four conditions are used for the calculations 
of the accuracy, sensitivity, and specificity of 
the fall detection algorithm. The four possible 
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conditions for the output of the system are 
presented below: 
•	 True Positive (TP): the system successfully 

detects the presence of fall
•	 False Positive (FP): the system detects a fall, 

although a fall did not occur;
•	 True Negative (TN): activity of daily livings 

(ADL) or non-fall movement is performed 
and the system does not notify as a fall

•	 False Negative (FN): the system does not 
announce a fall although a fall occurs.

	 The sensitivity, specificity, and accuracy 
of results are presented to evaluate the 
performances of the developed system:
Sensitivity represents the ability of the system 
to detect falls, 100% denoting that all falls are 
detected.
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Table 5 shows the results of the evaluation test. In general, 
different motions produce different patterns of signals, which 
can be used for the classification of fall events. However, the 
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contaminated with noise due to intrinsic and environmental 
factors.  Therefore, a filtering process must be applied to the 
collected data before applying the fall detection algorithm. 

 
TABLE 3 Validation Results 

Total Falls 180 Total ADL 225 
True 

Positive 
(TP) 

173 True Negative 
(TN) 217 

False 
Negative 

(FN) 
7 

False Positive 
(FP) 

 
8 

Sensitivity: 95.5% 
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By applying the neural network, it is possible to accurately 

classify fall events and other fall-like activities, which are 
difficult to distinguish using the threshold method. Due to the 
similarity of the signal profile, the ADL motion like jumping 
and running are most likely to produce False Positive results. 
The accuracy of the neural network system can be improved by 
including more input patterns in the training phase.  

 

IV. CONCLUSION 
 This paper proposed a human fall detection system designed 
using a neural network. As the experimental results indicate, the 
proposed fall detection method can detect and distinguish 
between the falling activities and ADL with high sensitivity, 

	 Specificity is the capacity to only detect 
falls and ignore non-fall events, 100% denoting 
that no false alarms are announced.
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	 By applying the neural network, it is 
possible to accurately classify fall events and 
other fall-like activities, which are difficult to 
distinguish using the threshold method. Due 
to the similarity of the signal profile, the ADL 
motion like jumping and running are most 
likely to produce False Positive results. The 
accuracy of the neural network system can be 
improved by including more input patterns in 
the training phase. 

IV. CONCLUSION
This paper proposed a human fall detection 
system designed using a neural network. As 
the experimental results indicate, the proposed 
fall detection method can detect and distinguish 
between the falling activities and ADL with 
high sensitivity, high specificity, and high 
accuracy with values of 95.5%, 96.4%, and 96.3% 
each. In addition, a vital-sign monitoring device 
to monitor the body temperature and pulse rate 
has been successfully developed to improve 
the emergency alert function of the system. By 
using the IoT-technology, the system can send 
alert messages to parents or friends of the users 
that include important information such as the 
location and time of the accidents, vital-signs, 
and nearby hospitals.
	 In future work, more simulated activities 
will be added to this system to improve 
performance.  It is the interest of the author to 
figure out a safe way for the elderly to perform 
the fall experiments and provide more realistic 
data. With the technology of fall detection 
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and the Internet of Things, it is hoped that the 
wearable fall alert system will provide reliable 
fall detection that can minimize fall injuries for 
the elderly.
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