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Abstract—This paper aims to demonstrate 
the extraction of palm vein pattern features 
by local binary pattern (LBP) and its different 
recognition rate by two types of classification 
methods. The first classification method is 
by K-nearest neighbour (KNN) while the 
second method is by a support vector machine 
(SVM). Whilst SVM is optimized for direct 
classifications between two classes, the KNN 
is best for multi-class classifications. Based on 
the biometric recognition framework shared in 
this paper, both techniques shared comparable 
performance in terms of the recognition rate. 
The differences in the recognition rate can only 
be seen if the LBP features extracted for the 
classification are different. In general, a higher 
recognition rate can be achieved for palm vein 
pattern biometric system if all LBP bins are 
used for the classification, compared to if only 
selected features are used for the purpose. The 
best recognition rate that can be achieved by the 
three datasets demonstrated in this paper are 
60%, 70% and 100% respectively for the CASIA, 
PolyU and self-dataset. It shows that different 
input dataset may behave differently even by 
using the same machine learning approach in 
its biometric recognition process. 

Keywords—biometric recognition, k-nearest 
neighbour (KNN), local binary pattern, support 
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I.  INTRODUCTION

P alm  vein pattern is one of the trusted 
biometric modalities that can be used as a 

human identifier because of its unique pattern 
for every individual [1]. Its pattern can be 
recorded with the assistance of an additional 
near infrared (NIR) illumination with NIR-
sensitive image sensor [2]. Since its direct 
visualization is vague in the acquired image, 
additional image processing is needed for a 
palm vein pattern to be revealed. Techniques in 
enhancing a palm vein pattern image include 
region-of-interest (ROI) extraction, image resize, 
contrast enhancement and noise reduction [3]. 
The techniques for enhancement depend on 
the features that are intended to be enhanced, 
either for line patterns or texture information 
respectively. Once the images are enhanced, 
the features will be extracted accordingly for 
classification.
	 Some of the methods that can be used for 
feature extraction include the Frangi vesselness 
filter [4], the Laplacian filter [5], the local binary 
pattern (LBP) [6], and the scale-invariant feature 
transform (SIFT) [1]. While the filtering method 
utilizes image processing in extracting the vein 
pattern, other methods utilize image statistical 
values and properties in describing the vein 
features. The features extracted will then be 
classified according to the palm samples for 
biometric recognition. The techniques for palm 
samples classification are subjected to the 
features extracted earlier.
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	 Several classification techniques in 
machine learning that have been used for palm 
vein pattern recognition are the support vector 
machine (SVM) [7], k-nearest neighbor (KNN) 
[8], and principle component analysis (PCA) 
[9]. Each technique in machine learning can be 
grouped into either supervised or unsupervised 
learning method. Depending on the researchers’ 
concern, supervised learning is computationally 
expensive but its accuracy rate is higher, 
while unsupervised learning requires less 
computation but with the price of compromised 
accuracy rate [10].
	 In this paper, a palm vein biometric 
classification framework using supervised 
machine learning method will be demonstrated. 
Although there are also other combinations of 
techniques shared in this area, this paper differs 
in which it also shares the result obtained 
from a self-developed dataset. Two supervised 
learning methods, that are KNN and SVM 
will be compared as the classifiers in this 
paper, to show their applicability for biometric 
recognition purpose. With that, this paper will 
be organized in such that the following section 
will describe more on the proposed biometric 
recognition framework. Section III will discuss 
the result and analysis of the demonstrated 
framework. The last section will provide an 
insight on the significant findings and future 
work related.

II.  PROPOSED BIOMETRIC 
RECOGNITION FRAMEWORK

The processes involved in palm vein pattern 
biometric recognition in this paper is illustrated 
in Fig. 1. The processes are summarized into five 
main blocks which are palm vein image dataset 
/ acquisition, ROI extraction, palm vein pattern 
enhancement, palm vein features extraction 
and palm vein classification. Each block will be 
described in the following subsections.
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Fig. 1. Processes involved in palm vein pattern biometric recognition. 

A. Datasets 
In this paper, there datasets of palm images were used for 

the biometric recognition demonstration. The three datasets 
were obtained respectively from the: (a) Chinese Academy of 
Sciences’ Institute of Automation (CASIA) [11], (b) Hong 
Kong Polytechnic University (PolyU) [12], and (c) self-dataset 
gathered by self-configured image acquisition device [13]. 
Each dataset consisted of a total of 60 images which 
represented 10 subjects with six samples each. 

Palm images in CASIA dataset were acquired through 
unguided acquisition process in a controlled environment [14], 
while PolyU dataset were acquired in guided and controlled 
environment [15]. The near infrared (NIR) peak wavelength 
used for illumination for the CASIA and PolyU datasets were 
850 nm and 880 nm respectively. The self-datasets were 
gathered through unguided process in an uncontrolled 
environment, utilizing a combination of 850 nm and 870 nm 
NIR peak wavelength as the illuminators [16]. The palm 
images were sampled to a same size and specified regions 
before they were processed for palm vein pattern enhancement 
using the region-of-interest (ROI) extraction processing. Fig. 2 
shows a sample ROI from the three datasets. 
 

   
(a) (b) (c) 

Fig. 2. Sample of ROI image for each dataset: (a) CASIA, (b) PolyU, and (c) 
self-dataset. 

B. Palm Vein Pattern Enhancement 
Palm images in the datasets (specifically its ROI image) 

were processed according to the framework of operations as 
described in [3]. Samples of enhanced palm vein image is 
shown in Fig. 3. After the processing, the extraction of palm 
vein pattern were done on the enhanced image by Local Binary 
Pattern (LBP) descriptors, which will be detailed in the 
following subsection. 
 

   
(a) (b) (c) 

Fig. 3. Sample of enhanced image for each dataset: (a) CASIA, (b) PolyU, 
and (c) self-dataset. 

C. Local Binary Pattern as Palm Vein Pattern Descriptor 
Local Binary Pattern (LBP) is a binary code generated from 

an image, after a central pixel and its neighbourhood were 
compared [17]. The generated binary code can be summarized 
into a histogram with each bin equal to the pattern of binary 
codes in decimal. For example, if the binary code generated is 
111101102, the bin in decimal is 24610 and its frequency 
depends on how many times the pattern is generated from the 
image.  

For the purpose of palm vein pattern descriptor, the 
‘rotation-invariant uniform’ bins were used where these 
specific patterns correspond to the edge information in the 
enhanced palm vein image, and the bin had been simplified to 
the numbers of occurrence of ‘1’ in the binary pattern. The 
‘rotation-invariant uniform’ LBP code constructed the 
following equations (1) and (2) where P is the number of 
neighbourhood pixels, R is the radius of the neighbours, gp is 
the grey-scale value of the neighbourhood pixels, gc is the 
grey-scale value of the central pixel, U(LBPP,R) is number of 
spatial transition in the LBP code and g0 is the grey-scale value 
of the pixel (0,R) in the rotation axis [17]. 
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(2) 

 
Based on the generated LBP code from the enhanced palm 

vein image, not all edge information in the image 
corresponded to the palm vein pattern. A sample of histogram 
for ‘rotation-invariant uniform’ LBP code is shown in Fig. 4 
(a), where only the bin highlighted in red corresponds to the 
vein pattern as detected in Fig. 4 (b). As such, the 
classification of palm vein pattern will be shown in both, either 
by using full bins or only vein feature bins, as the LBP 
descriptors. 
 

Palm Vein Image 
Dataset / Acquisition 

ROI 
Extraction 

Palm Vein 
Pattern 

Enhancement 

Palm Vein 
Features 

Extraction 

Palm Vein 
Classification 

Fig. 1.  Processes involved in palm vein pattern biometric 
recognition.

A.	 Datasets
In this paper, there datasets of palm images 
were used for the biometric recognition 
demonstration. The three datasets were obtained 
respectively from the: (a) Chinese Academy of 
Sciences’ Institute of Automation (CASIA) [11], 
(b) Hong Kong Polytechnic University (PolyU) 
[12], and (c) self-dataset gathered by self-
configured image acquisition device [13]. Each 
dataset consisted of a total of 60 images which 
represented 10 subjects with six samples each.
	 Palm images in CASIA dataset were 
acquired through unguided acquisition process 
in a controlled environment [14], while PolyU 
dataset were acquired in guided and controlled 
environment [15]. The near infrared (NIR) peak 
wavelength used for illumination for the CASIA 
and PolyU datasets were 850 nm and 880 nm 
respectively. The self-datasets were gathered 
through unguided process in an uncontrolled 
environment, utilizing a combination of 850 
nm and 870 nm NIR peak wavelength as 
the illuminators [16]. The palm images were 
sampled to a same size and specified regions 
before they were processed for palm vein pattern 
enhancement using the region-of-interest (ROI) 
extraction processing. Fig. 2 shows a sample 
ROI from the three datasets.
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Fig. 2. Sample of ROI image for each dataset: (a) CASIA, (b) 
PolyU, and (c) self-dataset.

B.	 Palm Vein Pattern Enhancement
Palm images in the datasets (specifically its 
ROI image) were processed according to 
the framework of operations as described in 
[3]. Samples of enhanced palm vein image 
is shown in Fig. 3. After the processing, the 
extraction of palm vein pattern were done on 
the enhanced image by Local Binary Pattern 
(LBP) descriptors, which will be detailed in the 
following subsection.
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Fig. 3.  Sample of enhanced image for each dataset: (a) 
CASIA, (b) PolyU, and (c) self-dataset.

C.	 Local Binary Pattern as Palm Vein Pattern  
	 Descriptor
Local Binary Pattern (LBP) is a binary code 
generated from an image, after a central pixel 
and its neighbourhood were compared [17]. The 
generated binary code can be summarized into 
a histogram with each bin equal to the pattern 
of binary codes in decimal. For example, if the 
binary code generated is 111101102, the bin in 
decimal is 24610 and its frequency depends on 
how many times the pattern is generated from 
the image. 
	 For the purpose of palm vein pattern 
descriptor, the ‘rotation-invariant uniform’ 
bins were used where these specific patterns 
correspond to the edge information in the 
enhanced palm vein image, and the bin had 
been simplified to the numbers of occurrence of 
‘1’ in the binary pattern. The ‘rotation-invariant 
uniform’ LBP code constructed the following 
equations (1) and (2) where P is the number 
of neighbourhood pixels, R is the radius of 

the neighbours, gp is the grey-scale value of 
the neighbourhood pixels, gc is the grey-scale 
value of the central pixel, U(LBPP,R) is number 
of spatial transition in the LBP code and g0 is the 
grey-scale value of the pixel (0,R) in the rotation 
axis [17].
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	 Based on the generated LBP code from 
the enhanced palm vein image, not all edge 
information in the image corresponded to the 
palm vein pattern. A sample of histogram for 
‘rotation-invariant uniform’ LBP code is shown 
in Fig. 4 (a), where only the bin highlighted in 
red corresponds to the vein pattern as detected 
in Fig. 4 (b). As such, the classification of palm 
vein pattern will be shown in both, either by 
using full bins or only vein feature bins, as the 
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(a) (b) 

Fig. 4. Generation of ‘rotation-invariant uniform’ LBP code of an enhanced 
palm vein image from CASIA dataset shown in: (a) LBP code 

histogram, and (b) extracted vein features for the highlighted bin. 

D. Vein Feature Matching and Accuracy 
Each dataset was then divided into two groups, either to be 

used for the training and validation (45 images), or for the 
performance assessment (15 images). The training was done 
by 5-fold cross-validation technique using two of the 
supervised machine learning methods that are K-nearest 
neigbour (KNN) and support vector machine (SVM) for 
comparison. 

 
1) K-nearest Neighbour (KNN) 

The K-nearest neighbour (KNN) is a classification method 
that utilized the distance between a data and its feature space 
[18]. During the training, the groups of data are classified to 
their nearest class based on distance k to its nearest neighbour. 
The training for KNN classification follows equations (3) and 
(4), where C(y) is the class for trained pattern using KNN. 
R(x,y) is defined in equation (4), N is the neighbouring size, x 
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biometric data recognition. The machine learning process was 
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model assessment will be presented in the following 
subsections. 
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The accuracy of the palm vein biometric recognition for the 

three datasets when the best k (obtained during the training) 
for the KNN model is used for the performance assessment are 
shown in Fig. 5. It can be seen that the accuracy of the palm 
vein biometric recognition is increased if the full LBP bins 
were used as its descriptors, compared to only vein features 
bin were used as its descriptors. This indicates that although 
the vein features were characterized by some of the ‘rotation-
invariant uniform’ LBP bins, the distinguishing factor is not 
accurate enough to be used as palm vein pattern descriptor for 
biometric recognition purpose. Still, the best accuracy 
obtained using the full bins are 100%, 60% and 60% for the 
self-dataset, CASIA, and PolyU datasets respectively. 

Fig. 4.  Generation of ‘rotation-invariant uniform’ LBP code 
of an enhanced palm vein image from CASIA dataset shown 

in: (a) LBP code histogram, and (b) extracted vein features 
for the highlighted bin.

D.	 Vein Feature Matching and Accuracy
Each dataset was then divided into two groups, 
either to be used for the training and validation 
(45 images), or for the performance assessment 
(15 images). The training was done by 5-fold 
cross-validation technique using two of the 
supervised machine learning methods that are 
K-nearest neigbour (KNN) and support vector 
machine (SVM) for comparison.

1)	 K-nearest Neighbour (KNN)
The K-nearest neighbour (KNN) is a 
classification method that utilized the distance 
between a data and its feature space [18]. 
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During the training, the groups of data are 
classified to their nearest class based on distance 
k to its nearest neighbour. The training for KNN 
classification follows equations (3) and (4), 
where C(y) is the class for trained pattern using 
KNN. R(x,y) is defined in equation (4), N is the 
neighbouring size, x is the class pattern, and y is 
the train pattern [19].
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for the KNN model is used for the performance assessment are 
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vein biometric recognition is increased if the full LBP bins 
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Fig. 5. Recognition accuracy with KNN classifiers. 

B. Accuracy by SVM Classifiers 
The accuracy of the SVM training for the three datasets are 

shown in Table II. The same three datasets extracted by the 
two LBP bins groups; that are either full bins or vein features 
bins, where used for the SVM training to compare its accuracy 
with the KNN model. The result consistently showed that the 
accuracy of the training is higher if all ‘rotation-invariant 
uniform’ bins of the LBP code were used as the descriptors, 
compared to if only selected bins (vein features) were used as 
descriptors for the three datasets. 

TABLE II.  ACCURACY OF SVM TRAINING 

Datasets LBP Bins Accuracy 

CASIA 

Features 32% 

Full 50% 

PolyU 
Features 56% 

Full 94% 

Self 
Features 54% 

Full 96% 

 
The performance of the SVM after the model fitting is 

shown in Fig. 6. The performance is consistent with the 
training result, where the accuracy of the SVM model is higher 
if all ‘rotation-invariant uniform’ bins were used as the 
descriptors. The best accuracy obtained using the full bins 
were 100%, 50% and 70% for the self-dataset, CASIA, and 
PolyU datasets respectively. When comparing both machine 
learning models (KNN and SVM), the best recognition 
accuracy that can be achieved are 100%, 60% and 70% 
respectively for self-dataset, CASIA and PolyU datasets.  

 
Fig. 6. Recognition accuracy with SVM classifiers. 

IV. CONCLUSION 
This paper shared the process in extracting palm vein 

features by local binary pattern (LBP) and its recognition rate 
by K-nearest neighbor (KNN) and Support Vector Machine 
(SVM). In general, both machine learning methods can be 
used for classification; however, the accuracy of the model for 
biometric recognition purpose depends on the nature of the 
input dataset. While the self-dataset in this paper is configured 
and fully supervised during the acquisition process, the other 
two datasets (CASIA and PolyU) are publicly available to be 
used by researchers in the area. The low recognition rate 
scored by the two datasets compared to the self-dataset might 
be due to the nature of the input data  that was obtained in its 
grey-scale value (format), compared to the self-dataset  which 
was originally obtained in its 24-bits value before the required 
post-processing. Even so, the aim of this paper is not to 
compare the performance of the datasets for biometric 
recognition purpose but rather to share the possibility of 
applying the machine learning technique for palm vein pattern 
biometric recognition.  

As such, it is observed that improvements had to be made 
especially with regard to the taylor-made image enhancement 
and palm vein pattern feature extraction, if the machine 
learning methods need to be utilized for biometric 
classification purpose. Since the best recognition accuracy that 
can be achieved are 100%, 60% and 70% respectively for self-
dataset, CASIA and PolyU datasets; surely improvements  
have to be made to the framework if the machine learning 
method is to be used for biometric recognition, with respect to 
the performance of the two publicly available datasets (CASIA 
and PolyU). As palm vein pattern in this paper relied heavily 
on the LBP code generated as its descriptors, future work can 
be done in using other descriptors to improve the biometric 
recognition performance.  
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with the KNN model. The result consistently showed that the 
accuracy of the training is higher if all ‘rotation-invariant 
uniform’ bins of the LBP code were used as the descriptors, 
compared to if only selected bins (vein features) were used as 
descriptors for the three datasets. 

TABLE II.  ACCURACY OF SVM TRAINING 

Datasets LBP Bins Accuracy 

CASIA 

Features 32% 

Full 50% 

PolyU 
Features 56% 

Full 94% 

Self 
Features 54% 

Full 96% 
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training result, where the accuracy of the SVM model is higher 
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IV. CONCLUSION 
This paper shared the process in extracting palm vein 

features by local binary pattern (LBP) and its recognition rate 
by K-nearest neighbor (KNN) and Support Vector Machine 
(SVM). In general, both machine learning methods can be 
used for classification; however, the accuracy of the model for 
biometric recognition purpose depends on the nature of the 
input dataset. While the self-dataset in this paper is configured 
and fully supervised during the acquisition process, the other 
two datasets (CASIA and PolyU) are publicly available to be 
used by researchers in the area. The low recognition rate 
scored by the two datasets compared to the self-dataset might 
be due to the nature of the input data  that was obtained in its 
grey-scale value (format), compared to the self-dataset  which 
was originally obtained in its 24-bits value before the required 
post-processing. Even so, the aim of this paper is not to 
compare the performance of the datasets for biometric 
recognition purpose but rather to share the possibility of 
applying the machine learning technique for palm vein pattern 
biometric recognition.  

As such, it is observed that improvements had to be made 
especially with regard to the taylor-made image enhancement 
and palm vein pattern feature extraction, if the machine 
learning methods need to be utilized for biometric 
classification purpose. Since the best recognition accuracy that 
can be achieved are 100%, 60% and 70% respectively for self-
dataset, CASIA and PolyU datasets; surely improvements  
have to be made to the framework if the machine learning 
method is to be used for biometric recognition, with respect to 
the performance of the two publicly available datasets (CASIA 
and PolyU). As palm vein pattern in this paper relied heavily 
on the LBP code generated as its descriptors, future work can 
be done in using other descriptors to improve the biometric 
recognition performance.  
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had to be made especially with regard to 
the taylor-made image enhancement and 
palm vein pattern feature extraction, if the 
machine learning methods need to be utilized 
for biometric classification purpose. Since 
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framework if the machine learning method 
is to be used for biometric recognition, with 
respect to the performance of the two publicly 
available datasets (CASIA and PolyU). As palm 
vein pattern in this paper relied heavily on the 
LBP code generated as its descriptors, future 
work can be done in using other descriptors to 
improve the biometric recognition performance. 
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