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Abstract—In recent days, electromyography 
(EMG) pattern recognition has becoming one of 
the major interests in rehabilitation area. However, 
EMG feature set normally consists of relevant, 
redundant and irrelevant features. To achieve 
high classification performance, the selection of 
potential features is critically important. Thus, 
this paper employs two recent feature selection 
methods namely competitive binary gray wolf 
optimizer (CBGWO) and modified binary tree 
growth algorithm (MBTGA) to evaluate the most 
informative EMG feature subset for efficient 
classification. The experimental results show that 
CBGWO and MBTGA are not only improves the 
classification performance, but also reduces the 
number of features. 
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I .  INTRODUCTION

The application of electromyography (EMG) 
pattern recognition has received much 

attentions from biomedical researchers. Thanks 
to current technology, the usage of EMG pattern 
recognition on myoelectric prosthesis control is 
becoming viable [1], [2]. However, EMG signal is 
non-stationary and unstable due to its complex 
characteristic. Hence, multiple step of processing 
are needed in order to attain high classification 
performance [3].
	 Generally, the processing of EMG signals 
can be categorized into four parts, which are 

signal processing, feature extraction, feature 
selection and classification. However, the 
signal processing is excluded in this work. 
This is mainly due to fast processing speed 
and simplicity [4]. Briefly, feature extraction is 
a process of extracting the hidden information 
from the signal. Feature selection attempts to 
select the most informative features from a 
large available feature set. Finally, the selected 
features are fed into the classifier (example: 
k-nearest neighbor)  for performance evaluation 
[5]–[7]. 
	 Recently, feature selection is becoming 
extremely important in the classification 
tasks. By selecting the relevant features for 
classification, the accuracy of the system can 
be enhanced [8]. In the past study, Krasoulis et 
al. [9] applied the sequence forward selection 
(SFS) for evaluating the potential EMG features. 
Too et al. [6] proposed a new competitive 
binary grey wolf optimizer (CBGWO) to solve 
the feature selection problem in EMG signals 
classification. The authors reported CBGWO 
can achieve high classification accuracy with 
a very low computational cost. In the same 
year, Too et al. [10] introduced another two 
new feature selection methods namely binary 
tree growth algorithm (BTGA) and modified 
binary tree growth algorithm (MBTGA) for 
EMG feature selection. The authors indicated 
that MBTGA outperformed BTGA and binary 
differential evolution (BDE) in evaluating the 
relevant features. Previous studies have shown 
the impact of feature selection in EMG signals 
classification. 
	 However, previous works mainly focus 
on the analysis of healthy subjects, but not Article history: Manuscript received 5 February 2019; received in 

revised form 4 April 2019; Accepted 5 April 2019.
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to the trans-radial amputees. Due to the lack 
of feature selection studies on amputee data 
sets, we aim to evaluate the performance of 
feature selection for amputee subjects. In this 
paper, two recent feature selection methods 
including CBGWO and MBTGA are employed 
for EMG signals classification. Initially, the 
EMG data of amputee subjects are collected 
from NinaPro database. In the next step, three 
recent EMG features are extracted and formed 
the feature vector. The extracted features are 
then normalized to prevent the numerical 
issue. Next, CBGWO and MBTGA are used to 
evaluate the most informative feature subset, 
and the selected features are fed into the 
classifier for the recognition tasks. The flow 
process of proposed EMG recognition system 
is shown in Fig.1. At the end of this paper, the 
effectiveness of CBGWO and MBTGA in EMG 
signals classification are presented.
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wolf optimizer (CBGWO) to solve the feature selection problem 
in EMG signals classification. The authors reported CBGWO 
can achieve high classification accuracy with a very low 
computational cost. In the same year, Too et al. [10] introduced 
another two new feature selection methods namely binary tree 
growth algorithm (BTGA) and modified binary tree growth 
algorithm (MBTGA) for EMG feature selection. The authors 
indicated that MBTGA outperformed BTGA and binary 
differential evolution (BDE) in evaluating the relevant features. 
Previous studies have shown the impact of feature selection in 
EMG signals classification.  
 However, previous works mainly focus on the analysis of 
healthy subjects, but not to the trans-radial amputees. Due to the 
lack of feature selection studies on amputee data sets, we aim to 
evaluate the performance of feature selection for amputee 
subjects.  In this paper, two recent feature selection methods 
including CBGWO and MBTGA are employed for EMG signals 
classification. Initially, the EMG data of amputee subjects are 
collected from NinaPro database. In the next step, three recent 
EMG features are extracted and formed the feature vector. The 
extracted features are then normalized to prevent the numerical 
issue. Next, CBGWO and MBTGA are used to evaluate the 
most informative feature subset, and the selected features are 
fed into the classifier for the recognition tasks. The flow process 
of proposed EMG recognition system is shown in Fig.1. At the 
end of this paper, the effectiveness of CBGWO and MBTGA in 
EMG signals classification are presented.       

Fig. 1. Flowchart of the proposed EMG recognition system. 
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The EMG data are collected from the publicly access 
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 Fig. 1. Flowchart of the proposed EMG recognition system.

II .  METHODOLOGY
A.	EMG Data
The EMG data are collected from the publicly 
access NinaPro project. In this study, the 
surface EMG signals of 17 hand motions, M1-
M17 (Exercise B) from 2 amputee subjects 
from NinaPro database 7 (DB7) are utilized 
[9]. In the experiment, twelve electrodes were 
implemented. The subject was asked to perform 
each hand motion for 5 seconds, followed by a 
resting phase of 3 seconds. Each hand motion 
was repeated for six times. Note that the EMG 
signals were sampled at 2000 Hz [9]. Before any 
further processing, all the resting phases are 
removed.

B.	 Feature Extraction
In this section, the EMG feature extraction is 
presented. Recently, Samuel et al. [2] proposed 
three novel EMG features for EMG pattern 

recognition. In their study, the authors reported 
that the newly proposed EMG features can 
achieve better classification performance as 
compared to traditional EMG features. In 
this regard, the three novel EMG features are 
employed in this work. Those features are 
explained as follow:
	 Absolute value of the Summation of 
Square root (ASS) is a recent EMG feature, and 
it can be defined as [2]:
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that the newly proposed EMG features can achieve better 
classification performance as compared to traditional EMG 
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employed in this work. Those features are explained as follow: 

Absolute value of the Summation of Square root (ASS) is a 
recent EMG feature, and it can be defined as [2]: 

 1 2

1
ASS

L

i
i

x


   (1) 

where x is the EMG signal and L is the number of samples. 
 Mean value of the Square root (MSR) is defined as the 
measurement of the total amount of muscle activity, and it can 
be formulated as [2]: 
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where x is the EMG signal and L is the number of samples. 
 Absolute value of the Summation of the expth root of the 
given signal and its Mean (ASM) is one of the recent EMG 
features that comprises of the information related to the 
amplitude of the rectified signal [2]. Mathematically, ASM can 
be expressed as: 
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where x is the EMG signal and L is the number of samples. 

C. Feature Selection 
Feature selection is an important step in data mining process, 

which is not only increasing the classification performance, but 
also reducing the number of features. In the present study, two 
recent feature selection methods namely Competitive Binary 
Grey Wolf Optimizer (CBGWO) and Modified Binary Tree 
Growth Algorithm (MBTGA) are utilized.  

CBGWO is an improved version of Binary Grey Wolf 
Optimization (BGWO), which has been proven to work better 
than BGWO in evaluating the optimal EMG feature subset. 
Generally, CBGWO is a population based metaheuristic 

algorithm. The wolves (solutions) are guided by the leaders 
(alpha, beta and delta) to move toward optimal prey position 
(global optimum). In CBGWO, the population is randomly 
divided into N/2 couples, where N is the population size. Then, 
the competition is made between two wolves in each couple, 
and the winner is directly passed into new population. On one 
side, the losers are updated by learning from the winners and 
leaders. Furthermore, the leaders are allowed to enhance 
themselves using the random walk. The detail on CBGWO can 
be found in [6].  

MBTGA is another improved version of Binary Tree Growth 
Algorithm (BTGA) that has been proven to be outperformed 
BTGA in EMG feature selection. Like CBGWO, MBTGA is 
also a population based optimization algorithm. Generally, 
MBTGA consists of four group of trees. In the first group, the 
trees updated themselves locally by using the swap operator. In 
the second group, the crossover and mutation operators are 
applied for the competition of light. In the third group, the worst 
trees are removed and the new trees are planted. In the final 
group, the mask operators are used to create new potential trees. 
Iteratively, the global best solution is stored to ensure high 
diversity. The detail on MBTGA can be found in [10].   

D. Classification 
Once the potential feature subset was selected, the chosen 

features are then fed into the classifier for the recognition task. 
In this work, the k-nearest neighbor (KNN) is used to classify 
the selected features for the recognition of multiple hand 
motions. According to literature, KNN can achieve promising 
performance in EMG pattern recognition. Additionally, KNN is 
simpler together with faster processing speed [11], [12]. Thus, it 
is believed that KNN can provide satisfactory performance in 
EMG signals classification.  

III. RESULT AND DISCUSSION 

A. Pre-Experimental 
The EMG data of 17 hand motions of 2 amputee subjects are 

acquired from DB7. Three recent features are then extracted 
from each EMG signal. In total, 36 features (3 features × 12 
channels) are extracted from each motion from each subject. 
Afterward, the features are normalized in the range between 0 
and 1. Fig.2 illustrates the sample features extracted from 
channel 9 from one subject. In Fig.2, the figure above displays 
the extracted features for hand motion type 1 (M1) while the 
figure below exhibits the extracted features for hand motion 
type 2 (M2).  

In the next step, the CBGWO and MBTGA are employed to 
evaluate the most informative feature subset. As for feature 
selection, the classification error rate computed by the KNN 
algorithm is used for fitness evaluation. Note that 6-folds 
cross-validation is applied in this work, where the data is 
randomly divided into 6 equal parts. Each part is used for testing 
in succession, while the remaining 5 parts are used for training 
session. The averaged result obtained from 6 folds is used for 
performance evaluation [9]. Table I outlines the parameter 
setting of feature selection methods. As can be seen, CBGWO 
has less parameters than MBTGA. Since the performance of 

		                  (1)

where x is the EMG signal and L is the number 
of samples.
	 Mean value of the Square root (MSR) is 
defined as the measurement of the total amount  
of muscle activity, and it can be formulated as [2]:
 
		

International Journal of Human and Technology Interaction (IJHaTI), Vol. 3, No. 1, April 2019 

2 
 

ISSN: 2590-3551 

from NinaPro database 7 (DB7) are utilized [9]. In the 
experiment, twelve electrodes were implemented. The subject 
was asked to perform each hand motion for 5 seconds, followed 
by a resting phase of 3 seconds. Each hand motion was repeated 
for six times. Note that the EMG signals were sampled at 2000 
Hz [9]. Before any further processing, all the resting phases are 
removed.     

B. Feature Extraction 
In this section, the EMG feature extraction is presented. 

Recently, Samuel et al. [2] proposed three novel EMG features 
for EMG pattern recognition. In their study, the authors reported 
that the newly proposed EMG features can achieve better 
classification performance as compared to traditional EMG 
features. In this regard, the three novel EMG features are 
employed in this work. Those features are explained as follow: 

Absolute value of the Summation of Square root (ASS) is a 
recent EMG feature, and it can be defined as [2]: 

 1 2

1
ASS

L

i
i

x


   (1) 

where x is the EMG signal and L is the number of samples. 
 Mean value of the Square root (MSR) is defined as the 
measurement of the total amount of muscle activity, and it can 
be formulated as [2]: 

 1 2

1

1MSR
L

i
i

x
L 

   (2) 

where x is the EMG signal and L is the number of samples. 
 Absolute value of the Summation of the expth root of the 
given signal and its Mean (ASM) is one of the recent EMG 
features that comprises of the information related to the 
amplitude of the rectified signal [2]. Mathematically, ASM can 
be expressed as: 

 exp

1ASM

0.50, if 0.25* and 0.75*
exp

0.75, otherwise

L
ii

x
L

i L i L



 
 



 (3) 

where x is the EMG signal and L is the number of samples. 

C. Feature Selection 
Feature selection is an important step in data mining process, 

which is not only increasing the classification performance, but 
also reducing the number of features. In the present study, two 
recent feature selection methods namely Competitive Binary 
Grey Wolf Optimizer (CBGWO) and Modified Binary Tree 
Growth Algorithm (MBTGA) are utilized.  

CBGWO is an improved version of Binary Grey Wolf 
Optimization (BGWO), which has been proven to work better 
than BGWO in evaluating the optimal EMG feature subset. 
Generally, CBGWO is a population based metaheuristic 

algorithm. The wolves (solutions) are guided by the leaders 
(alpha, beta and delta) to move toward optimal prey position 
(global optimum). In CBGWO, the population is randomly 
divided into N/2 couples, where N is the population size. Then, 
the competition is made between two wolves in each couple, 
and the winner is directly passed into new population. On one 
side, the losers are updated by learning from the winners and 
leaders. Furthermore, the leaders are allowed to enhance 
themselves using the random walk. The detail on CBGWO can 
be found in [6].  

MBTGA is another improved version of Binary Tree Growth 
Algorithm (BTGA) that has been proven to be outperformed 
BTGA in EMG feature selection. Like CBGWO, MBTGA is 
also a population based optimization algorithm. Generally, 
MBTGA consists of four group of trees. In the first group, the 
trees updated themselves locally by using the swap operator. In 
the second group, the crossover and mutation operators are 
applied for the competition of light. In the third group, the worst 
trees are removed and the new trees are planted. In the final 
group, the mask operators are used to create new potential trees. 
Iteratively, the global best solution is stored to ensure high 
diversity. The detail on MBTGA can be found in [10].   

D. Classification 
Once the potential feature subset was selected, the chosen 

features are then fed into the classifier for the recognition task. 
In this work, the k-nearest neighbor (KNN) is used to classify 
the selected features for the recognition of multiple hand 
motions. According to literature, KNN can achieve promising 
performance in EMG pattern recognition. Additionally, KNN is 
simpler together with faster processing speed [11], [12]. Thus, it 
is believed that KNN can provide satisfactory performance in 
EMG signals classification.  

III. RESULT AND DISCUSSION 

A. Pre-Experimental 
The EMG data of 17 hand motions of 2 amputee subjects are 

acquired from DB7. Three recent features are then extracted 
from each EMG signal. In total, 36 features (3 features × 12 
channels) are extracted from each motion from each subject. 
Afterward, the features are normalized in the range between 0 
and 1. Fig.2 illustrates the sample features extracted from 
channel 9 from one subject. In Fig.2, the figure above displays 
the extracted features for hand motion type 1 (M1) while the 
figure below exhibits the extracted features for hand motion 
type 2 (M2).  

In the next step, the CBGWO and MBTGA are employed to 
evaluate the most informative feature subset. As for feature 
selection, the classification error rate computed by the KNN 
algorithm is used for fitness evaluation. Note that 6-folds 
cross-validation is applied in this work, where the data is 
randomly divided into 6 equal parts. Each part is used for testing 
in succession, while the remaining 5 parts are used for training 
session. The averaged result obtained from 6 folds is used for 
performance evaluation [9]. Table I outlines the parameter 
setting of feature selection methods. As can be seen, CBGWO 
has less parameters than MBTGA. Since the performance of 

		                 (2)

where x is the EMG signal and L is the number 
of samples.
	 Absolute value of the Summation of the 
expth root of the given signal and its Mean (ASM) 
is one of the recent EMG features that comprises 
of the information related to the amplitude of 
the rectified signal [2]. Mathematically, ASM 
can be expressed as:
 

	

International Journal of Human and Technology Interaction (IJHaTI), Vol. 3, No. 1, April 2019 

2 
 

ISSN: 2590-3551 

from NinaPro database 7 (DB7) are utilized [9]. In the 
experiment, twelve electrodes were implemented. The subject 
was asked to perform each hand motion for 5 seconds, followed 
by a resting phase of 3 seconds. Each hand motion was repeated 
for six times. Note that the EMG signals were sampled at 2000 
Hz [9]. Before any further processing, all the resting phases are 
removed.     

B. Feature Extraction 
In this section, the EMG feature extraction is presented. 

Recently, Samuel et al. [2] proposed three novel EMG features 
for EMG pattern recognition. In their study, the authors reported 
that the newly proposed EMG features can achieve better 
classification performance as compared to traditional EMG 
features. In this regard, the three novel EMG features are 
employed in this work. Those features are explained as follow: 

Absolute value of the Summation of Square root (ASS) is a 
recent EMG feature, and it can be defined as [2]: 

 1 2

1
ASS

L

i
i

x


   (1) 

where x is the EMG signal and L is the number of samples. 
 Mean value of the Square root (MSR) is defined as the 
measurement of the total amount of muscle activity, and it can 
be formulated as [2]: 

 1 2

1

1MSR
L

i
i

x
L 

   (2) 

where x is the EMG signal and L is the number of samples. 
 Absolute value of the Summation of the expth root of the 
given signal and its Mean (ASM) is one of the recent EMG 
features that comprises of the information related to the 
amplitude of the rectified signal [2]. Mathematically, ASM can 
be expressed as: 

 exp

1ASM

0.50, if 0.25* and 0.75*
exp

0.75, otherwise

L
ii

x
L

i L i L



 
 



 (3) 

where x is the EMG signal and L is the number of samples. 

C. Feature Selection 
Feature selection is an important step in data mining process, 

which is not only increasing the classification performance, but 
also reducing the number of features. In the present study, two 
recent feature selection methods namely Competitive Binary 
Grey Wolf Optimizer (CBGWO) and Modified Binary Tree 
Growth Algorithm (MBTGA) are utilized.  

CBGWO is an improved version of Binary Grey Wolf 
Optimization (BGWO), which has been proven to work better 
than BGWO in evaluating the optimal EMG feature subset. 
Generally, CBGWO is a population based metaheuristic 

algorithm. The wolves (solutions) are guided by the leaders 
(alpha, beta and delta) to move toward optimal prey position 
(global optimum). In CBGWO, the population is randomly 
divided into N/2 couples, where N is the population size. Then, 
the competition is made between two wolves in each couple, 
and the winner is directly passed into new population. On one 
side, the losers are updated by learning from the winners and 
leaders. Furthermore, the leaders are allowed to enhance 
themselves using the random walk. The detail on CBGWO can 
be found in [6].  

MBTGA is another improved version of Binary Tree Growth 
Algorithm (BTGA) that has been proven to be outperformed 
BTGA in EMG feature selection. Like CBGWO, MBTGA is 
also a population based optimization algorithm. Generally, 
MBTGA consists of four group of trees. In the first group, the 
trees updated themselves locally by using the swap operator. In 
the second group, the crossover and mutation operators are 
applied for the competition of light. In the third group, the worst 
trees are removed and the new trees are planted. In the final 
group, the mask operators are used to create new potential trees. 
Iteratively, the global best solution is stored to ensure high 
diversity. The detail on MBTGA can be found in [10].   

D. Classification 
Once the potential feature subset was selected, the chosen 

features are then fed into the classifier for the recognition task. 
In this work, the k-nearest neighbor (KNN) is used to classify 
the selected features for the recognition of multiple hand 
motions. According to literature, KNN can achieve promising 
performance in EMG pattern recognition. Additionally, KNN is 
simpler together with faster processing speed [11], [12]. Thus, it 
is believed that KNN can provide satisfactory performance in 
EMG signals classification.  

III. RESULT AND DISCUSSION 

A. Pre-Experimental 
The EMG data of 17 hand motions of 2 amputee subjects are 

acquired from DB7. Three recent features are then extracted 
from each EMG signal. In total, 36 features (3 features × 12 
channels) are extracted from each motion from each subject. 
Afterward, the features are normalized in the range between 0 
and 1. Fig.2 illustrates the sample features extracted from 
channel 9 from one subject. In Fig.2, the figure above displays 
the extracted features for hand motion type 1 (M1) while the 
figure below exhibits the extracted features for hand motion 
type 2 (M2).  

In the next step, the CBGWO and MBTGA are employed to 
evaluate the most informative feature subset. As for feature 
selection, the classification error rate computed by the KNN 
algorithm is used for fitness evaluation. Note that 6-folds 
cross-validation is applied in this work, where the data is 
randomly divided into 6 equal parts. Each part is used for testing 
in succession, while the remaining 5 parts are used for training 
session. The averaged result obtained from 6 folds is used for 
performance evaluation [9]. Table I outlines the parameter 
setting of feature selection methods. As can be seen, CBGWO 
has less parameters than MBTGA. Since the performance of 

     (3)

where x is the EMG signal and L is the number 
of samples.
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the number of features. In the present study, 
two recent feature selection methods namely 
Competitive Binary Grey Wolf Optimizer 
(CBGWO) and Modified Binary Tree Growth 
Algorithm (MBTGA) are utilized. 
	 CBGWO is an improved version of Binary 
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been proven to work better than BGWO in 
evaluating the optimal EMG feature subset. 
Generally, CBGWO is a population based 
metaheuristic algorithm. The wolves (solutions) 
are guided by the leaders (alpha, beta and 
delta) to move toward optimal prey position 
(global optimum). In CBGWO, the population 
is randomly divided into N/2 couples, where 
N is the population size. Then, the competition 
is made between two wolves in each couple, 
and the winner is directly passed into new 
population. On one side, the losers are updated 
by learning from the winners and leaders. 
Furthermore, the leaders are allowed to enhance 
themselves using the random walk. The detail 
on CBGWO can be found in [6]. 
	 MBTGA is another improved version of 
Binary Tree Growth Algorithm (BTGA) that has 
been proven to be outperformed BTGA in EMG 
feature selection. Like CBGWO, MBTGA is also 
a population based optimization algorithm. 
Generally, MBTGA consists of four group 
of trees. In the first group, the trees updated 
themselves locally by using the swap operator. 
In the second group, the crossover and mutation 
operators are applied for the competition of 
light. In the third group, the worst trees are 
removed and the new trees are planted. In the 
final group, the mask operators are used to 
create new potential trees. Iteratively, the global 
best solution is stored to ensure high diversity. 
The detail on MBTGA can be found in [10].

D.	Classification
Once the potential feature subset was selected, 
the chosen features are then fed into the 
classifier for the recognition task. In this work, 
the k-nearest neighbor (KNN) is used to classify 
the selected features for the recognition of 
multiple hand motions. According to literature, 
KNN can achieve promising performance in 
EMG pattern recognition. Additionally, KNN 
is simpler together with faster processing 
speed [11], [12]. Thus, it is believed that KNN 
can provide satisfactory performance in EMG 
signals classification. 

III .  RESULT AND DISCUSSION
A.	Pre-Experimental
The EMG data of 17 hand motions of 2 amputee 
subjects are acquired from DB7. Three recent 
features are then extracted from each EMG signal. 
In total, 36 features (3 features × 12 channels) are 
extracted from each motion from each subject. 
Afterward, the features are normalized in the 
range between 0 and 1. Fig.2 illustrates the sample 
features extracted from channel 9 from one subject. 
In Fig.2, the figure above displays the extracted 
features for hand motion type 1 (M1) while the 
figure below exhibits the extracted features for 
hand motion type 2 (M2). 
	 In the next step, the CBGWO and MBTGA 
are employed to evaluate the most informative 
feature subset. As for feature selection, the 
classification error rate computed by the KNN 
algorithm is used for fitness evaluation. Note that 
6-folds cross-validation is applied in this work, 
where the data is randomly divided into 6 equal 
parts. Each part is used for testing in succession, 
while the remaining 5 parts are used for training 
session. The averaged result obtained from 6 
folds is used for performance evaluation [9]. 
Table I outlines the parameter setting of feature 
selection methods. As can be seen, CBGWO 
has less parameters than MBTGA. Since the 
performance of metaheuristic optimization 
algorithm are greatly influenced by the initial 
solutions, thus, each feature selection method 
is executed for 10 runs with different random 
seed. The averaged result obtained form 10 runs 
is used for performance comparison.  
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B.	 Experimental Result
Fig.3 shows the results of classification accuracy 
of two feature selection methods. As can be 
observe, the worst classification performance 
was falling on Original. The results indicated 
that by applying the feature selection (CBGWO 
or MBTGA), the classification accuracy has been 
increased. This again verifies the important of 
feature selection in EMG signals classification. 
In Fig.3, CBGWO outperformed MBTGA for 
subject 1. By contrast, MBTGA scores better 
accuracy for subject 2. This result implies 
that no universal optimizer can solve all the 
feature selection problems in the world, which 
is according to No Free Lunch (NFL) Theorem 
[15]. 
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Table II displays the results of feature size. It is 
worth noting that Original represents the full 
features (36 features). From Table II, MBTGA 
achieved the mean feature size of 17.85. On the 
other hand, CBGWO offered the mean feature 
size of 18.65, which eliminates more than 
50% of features in the process of evaluation. 
In comparison with MBTGA, CBGWO 
requires roughly 19 features in providing a 
high classification result, which leads to low 
complexity.
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	 Table III demonstrates the results of 
F-measure. It is observed that the performance 
with feature selection is better than Original 
(full features). The experimental result again 
verified the efficiency of feature selection 
in classification task. In Table III, CBGWO 
provided higher mean F-measure of 0.8520, 
followed by MBTGA, 0.8482. Ultimately, the 
feature selection method that offered the best 
performance is found to be CBGWO. 
	 Fig.4 presents the results of computational 
time for CBGWO and MBTGA. Based on the 
result obtained, it shows that CBGWO provided 
the fastest processing speed, which leads to 
very low computational cost. In agreement 
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with previous study, CBWGO made use of only 
half population in the updating process, thus 
resulting in fast computational speed [6].    

TABLE III.  RESULTS OF F-MEASURE 

Subject
F-measure

Original CBGWO MBTGA

1 0.7268 0.8092 0.7975

2 0.8721 0.8949 0.8989

Mean 0.7994 0.8520 0.8482
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Fig. 4. Computational cost of two feature selection methods. 

IV. CONCLUSION 
In this paper, the effectiveness of feature selection in EMG 

signals classification was presented. Occasionally, feature 
selection not only minimizes the feature size, but also improves 
the classification performance. Presently, two recent feature 
selection methods namely CBGWO and MBTGA were 
employed to evaluate the optimal feature subset. Based on the 
results obtained, it showed that by applying CBWGO and 
MBTGA, the classification performance has been improved. In 
additional, the number of features have been reduced. 
Furthermore, the performances of CBGWO and MBTGA are 
found to be similar. However, CBGWO can eliminate more 
redundant and irrelevant features and it contributes a very low 
computational cost. In sum, CBGWO and MBTGA are suitable 
to be applied for rehabilitation and clinical applications.  
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IV.  CONCLUSION
In this paper, the effectiveness of feature 
selection in EMG signals classification was 
presented. Occasionally, feature selection 
not only minimizes the feature size, but also 
improves the classification performance. 
Presently, two recent feature selection methods 
namely CBGWO and MBTGA were employed 
to evaluate the optimal feature subset. Based on 
the results obtained, it showed that by applying 
CBWGO and MBTGA, the classification 
performance has been improved. In additional, 
the number of features have been reduced. 
Furthermore, the performances of CBGWO 
and MBTGA are found to be similar. However, 
CBGWO can eliminate more redundant and 
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and MBTGA are suitable to be applied for 
rehabilitation and clinical applications. 
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