### Medium Term Load Forecasting Using Statistical Feature Self Organizing Maps (SOM)

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

I. A. Samuel, F. C. F, A. A. A, and A. A. Awelewa, “Medium-Term Load Forecasting Of Covenant University Using The Regression Analysis Methods,” vol. 4, no. 4, pp. 10–17, 2014.

N. Amjady and F. Keynia, “Mid-term load forecasting of power systems by a new prediction method,” vol. 49, pp. 2678–2687, 2008.

O. A. S. Carpinteiro and A. P. Alves da Silva, “A hierarchical mboxself-organizing map model in short-term load forecasting,” Eng. Appl. Neural Networks. Proc. 5th Int. Conf. Eng. Appl. Neural Networks, pp. 75–80, 1999.

E. A. Feinberg and D. Genethliou, “Chapter 12 LOAD FORECASTING,” in Applied Mathematics for Restructured Electric Power Systems: Optimization, Control, and Computational Intelligence, Springer, Boston, MA, 2005, pp. 269–285.

E. Gonzalez-Romera, M. A. Jaramillo-Moran, and D. Carmona, Monthly Electric Energy Demand Forecasting Based on Trend Extraction, vol. 21. 2006.

N. Abu-shikhah, F. Elkarmi, and O. M. Aloquili, “Medium-Term Electric Load Forecasting Using Multivariable Linear and Non-Linear Regression,” Smart Grid Renew. Energy, vol. 2, no. May, pp. 126– 135, 2011.

M. Martín-Merino and J. Román, “Electricity Load Forecasting Using Self Organizing Maps BT - Artificial Neural Networks – ICANN 2006,” 2006, pp. 709–716.

G. P. Papaioannou, C. Dikaiakos, A. Dramountanis, and P. G. Papaioannou, “Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Classical Statistical Models ( SARIMAX , Exponential,” 2016.

A. D. Papalexopoulos, S. Hao, and T.-M. Peng, “An implementation of a neural network based load forecasting model for the EMS,” IEEE Trans. Power Syst., vol. 9, no. 4, pp. 1956–1962, 1994.

A. Mohan, “Mid Term Electrical Load Forecasting For State of Himachal Pradesh Using Different Weather Conditions via ANN Model,” vol. 1, no. 2, pp. 60–63, 2013.

G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial neural networks : The state of the art,” vol. 14, pp. 35–62, 1998.

M. López, S. Valero, C. Senabre, J. Aparicio, and A. Gabaldon, “Application of SOM neural networks to short-term load forecasting: The Spanish electricity market case study,” Electr. Power Syst. Res., vol. 91, pp. 18–27, 2012.

T. Kohonen, Self-Organizing Maps, 2nd ed. Springer-Verlag Berlin Heidelberg, 2001.

V. Chaudhary, R. S. Bhatia, and A. K. Ahlawat, “A novel SelfOrganizing Map (SOM) learning algorithm with nearest and farthest neurons,” Alexandria Eng. J., vol. 53, no. 4, pp. 827–831, 2014.

S. M. Guthikonda, “Kohonen Self-Organizing Maps,” no. December, 2005.

J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas, “SOM Toolbox for Matlab 5,” Tech. Rep. A57, vol. 2, no. 0, p. 59, 2000.

A. A. Akinduko, E. M. Mirkes, and A. N. Gorban, “SOM: Stochastic initialization versus principal components,” Inf. Sci. (Ny)., vol. 364– 365, pp. 213–221, 2016.

Z. H. Bohari, H. S. Azemy, M. N. Mohd Nasir, F. Baharom, M. F. Sulaima, and M. Jali, Reliable short term load forecasting using self organizing map (SOM) in deregulated electricity market, vol. 79. 2015.

A.Ultsch and H. P. Siemon, “Kohonen’s SeIf Organizing Feature Maps for Exploratory Data Analysis,” in INNC’90, 1990, pp. 305– 308.

S.-L. Shieh and I.-E. Liao, “A new approach for data clustering and visualization using self-organizing maps,” Expert Syst. Appl., vol. 39, no. 15, pp. 11924–11933, 2012.

T. Hong, P. Pinson, and S. Fan, “Global energy forecasting competition 2012,” Int. J. Forecast., vol. 30, no. 2, pp. 357–363, 2014.

### Refbacks

- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 3.0 License.

**ISSN: 2180****-1843**

**eISSN: 2289-8131**