Implementation of EEDC for Trailer Segment in Enhanced FPGA-based FlexRay Controller

Ronnie O. Serfa Juan, Hi Seok Kim

Abstract


FlexRay is a time-triggered protocol that is a standard for reliable high-speed communications network especially for automotive applications such as Advanced Driver Assistance Systems (ADAS). This paper implemented using field-programmable gate array (FPGA)-based communication controller with a reconfigured trailer segment for a faster data rate. The FlexRay's trailer segments that use enhanced error detections and corrections codes that provide better functionality. This paper is implemented and verified using a Xilinx Spartan 6 FPGA. Experimental results show that this proposed implementation performs better regarding data rate and reduction of resource utilisation. This implementation represents an advancement in the FPGA-based system for vehicular applications and other time-triggered devices.

Keywords


Configured FPGA; Enhanced Error-Detection and Correction Code; FlexRay; Time-Triggered Devices;

Full Text:

PDF

References


R. Hedge, G. Mishra, K. S. Gurumurthy. Software and Hardware design Challenges in Automotive Embedded System. International Journal of VLSI design and Communication System. 2 (3) (2011) 165- 174.

FlexRay Consortium. FlexRay Communications Systems – Protocol Specifications. Version 2.1 Revision A. (2005) [Online]. Available: http://www.flexray.com

Fujitsu. Next Generation Car Network – FlexRay. [Online]. Available: http://www.fujitsu.com/downloads/CN/fmc/lsi/FlexRay-EN.pdf

J. Kotz, S. Poledna. Making FlexRay a Reality in a Premium Car. SAe International Conference of the Convergence Transportation Electronics Association. (2008) 391-395.

M. Grenier, L. Havet, N. Navet. Configuring the communication on FlexRay – The Case of the Static Segment. 4th European Congress on Embedded Real – Time Software. (2008) 1-18.

R. Shaw, B. Jackman. An Introduction to FlexRay as an Industrial Network. IEEE International Symposium on Industrial Electronics. (2008) 1849-1854.

S. Choosang, R. Taburan, S. Gordo. A formal model of an AUTOSAR in vehicle in vehicle communication protocol. International Conference on Information and Communication Technology for Embedded System. (2010).

M. Lukasiewycz, M. Glab, J. Teich, P. Milbredt. FlexRay Schedule Optimization of the Static Segment. 7th IEEE/ACM International Conference on Hardware/Software Codesign and System Synthesis. (2009) 363-372.

Rishvanth, D. Valli, K. Ganesan. Design of an In-Vehicle Network (Using LIN, Can and FlexRay), Gateway and its Diagnostics Using Vector CANoe. Americal Journal of Signal Processing. 1 (2) (2011) 40-45.

D. C. Liaw, I. C. Liu, K. L. Chang. The FlexRay Implementation of ByWire System for Electric Vehicle. World Electric Vehicle Journal. 5 (2012) 610-616.

A. Joseph. Reliable FlexRay Communication Controller for Automotive Systems. International Conference on Engineering Innovations and Solutions. (2016) 107-112.

B. Vermeulen, J. Staschulat, M. Struck, S. Lorenz. FlexRay Switch, More bandwidth and better robustness in FlexRay networks. Springer Automotive Media. (2010) 32-36.

A. Easwaran, I. Shin, O. Sokolsky, I. Lee. Incremental schedulability analysis of hierarchical real-time components. 6th AMC & IEEE International Conference on Embedded Software. (2006) 272-281.

M. Anand, S. Fischmeister, I. Lee. A comparison of compositional schedulability analysis techniques for hierarchical real-time systems. ACM Transactions on Embedded Computer System. 13 (1) (2013) 1- 37.

P. Mundhenk, F. Sagstetter, S. Chakraborty. Policy-based Message Scheduling using FlexRay. International Conference on Hardware/Software Codesign and System Synthesis. (2014).

Texas Instrument. FlexRay Module Training. (2015). [Online]. Available: http://www.ti.com/lit/ml/sprt718/sprt718.pdf

K. Schmidt, E. G. Schmidt. Message scheduling for the FlexRay Protocol: The Static Segment. IEEE Transactions on Vehicle Technology. 58 (5) (2009) 2170-2179.

E. G. Schmidt, K. Schmidt. Message scheduling for the FlexRay Protocol: The Dynamic Segment. IEEE Transactions on Vehicle Technology. 58 (5) (2009) 2160-2169.

W. N. Rabai, R. Bouhouch, H. Jaouani, S. Hasnaoui. Static and Dynamic Scheduling for FlexRay Network using the Combined Method. International Journal of Information Technology and System. 1 (1) (2012) 16-24.

Y. N. Xu, Y. E. Kim, K. J. Cho, J. G. Chung, M. S. Lim. Implementation of FlexRay Communication Controller Protocol with Application to a Robot System. 15th IEEE International Conference on Electronics Circuits and Systems. (2008) 994-997, 2008.

J. H. Park, C. W. Moon. Implementation of an Integrated Controller for a Robot Hand Base on a Vehicle Communication System. International Journal of Control and Automation. 7 (11) (2014) 287-298.

M. Khanapurkar, J. Hande, P. Bajaj. Approach for VHDL and FPGA Implementation of Communication Controller. Second International Conference on Emerging Trends in Engineering and Technology. (2009) 397-401.

M. Heinz, M. Hillenbrand, P. Brunn, K. Mueller-Glaser. A FlexRay parameter calculation methodology based on electric/electronic architecture of vehicles. 6th IFAC Symposium Advances in Automotive Control. (2010) 407-412.

P. Koopman, T. Chakravarty. Cyclic redundancy code (CRC) polynomial selection for embedded networks. [Online]. Available: https://users.ececmu.edu/~koopman/roses/dsn04/koopman04_crc_pol y_embedded.pdf, accessed August 2016

Wang, Hongli. "A kind of performance improvement of Hamming code." Information and Management Engineering. Springer, Berlin, Heidelberg, (2011) 315-318.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

ISSN: 2180-1843

eISSN: 2289-8131