A General Solar Radiation Estimation Model Using Ground Measured Meteorological Data in Sarawak, Malaysia

S. Bandy, W.A. Wan Zainal


Daily solar radiation is main fundamental for most of physical and living processes on the Earth’s surface as it plays role in the local and global energy budget. The data at specific location is quite indispensable for many solar energy related researches but not all places are equipped with such measured data collection. Solar radiation models based on meteorological parameters can serve as substitute to measured illuminance and irradiation data. This study is aimed to estimate the missing or incomplete data of solar radiation at meteorological stations in Sarawak using commonly measured meteorological data and selecting optimal models. Using the measured maximum and minimum air temperature differences, ΔT, relative humidity, RH and cloud factor, CF covering the years from 2010 to 2015, existing model are calibrated and new model is developed. The solar radiation is estimated by applying linear regression of ΔT, RH and multiple regression method (MRM). The result of calculation then is compared with the existing temperaturebased model namely Hargreaves-Samani model and BristowCampbell model using statistical performance. The result shows that over short and long term, MRM perform the best by giving small RMSE and MBE of close to 0%. Linear ΔT and RH gave considerable results of MBE less than 10% but vary in term of RMSE. BC model performance is quite similar to the performance of linear ΔT- K T model. The application of MRM model to the measured data is the best in predicting solar radiation data.


Air Temperature; Clearness Index; Cloud Factor; Relative Humidity; Solar Radiation Estimation;

Full Text:



R. Schmalensee, V. Bulovic, R. Armstrong, C. Battle, A. Reja, R. Jaffe, J. Jean, M. Raanan, F. O’sullivan, And J. Parsons, “The Future of Solar Energy: An Interdisciplinary MIT Study,” 2015.

N. Phakamas, A. Jintrawet, and A. Patanothai, “Estimation of solar radiation based on air temperature and application with the DSSAT v4 . 5 peanut and rice simulation models in Thailand,” Agric. For. Meteorol., vol. 180, pp. 182–193, 2013.

T. Muneer, Solar Radiation and Daylight Models. 2004.

L. A. Hunt, L. Kuchar, and C. J. Swanton, “Estimation of solar radiation for use in crop modelling,” Agric. For. Meteorol., vol. 91, pp. 293–300, 1998.

A. A. Sabziparvar and H. Shetaee, “Estimation of global solar radiation in arid and semi-arid climates of East and West Iran.,” Energy, no. August, pp. 649–655, 2007.

S. A. Khalil, “Parameterization models for solar radiation and solar technology applications,” Energy Convers. Manag., vol. 49, no. 8, pp. 2384–2391, Aug. 2008.

A. A. Osinowo, E. C. Okogbue, S. B. Ogungbenro, and O. Fashanu, “Analysis of Global Solar Irradiance over Climatic Zones in Nigeria for Solar Energy Applications,” vol. 2015, 2015.

A. Q. Jakhrani, A. Othman, A. R. H. Rigit, S. R. Samo, and S. Ahmed, “Estimation of Incident Solar Radiation on Tilted Surface by Different Empirical Models,” vol. 2, no. 12, pp. 15–20, 2012.

S. Younes, R. Claywell, and T. Ã. Muneer, “Quality control of solar radiation data : Present status and proposed new approaches,” Energy,vol. 30, pp. 1533–1549, 2005.

L. T. Wong and W. K. Chow, “Solar radiation model,” Appl. Energy, vol. 69, pp. 191–224, 2001.

A. K. Katiyar and C. K. Pandey, “A Review of Solar Radiation Models — Part I,” vol. 2013, 2013.

N. N. Gana and D. O. Akpootu, “Angstrom Type Empirical Correlation for Estimating Global,” Int. J. Eng. Sci., vol. 2, no. 11, pp. 58–78, 2013.

A. Ängström, “Solar and Terrestrial Radiation,” Q. J. R. Meteorol. Soc., vol. 50, no. 210, pp. 121–126, 1924.

G. H. HARGREAVES, “Estimation potential evapotranspiration,” J. Irrig. Drain. Eng., vol. 108, pp. 223–230, 1982.

K. L. Bristow and G. S. Campbell, “On the relationship between incoming solar radiation and daily maximum and minimum temperature,” Agric. For. Meteorol., vol. 31, no. 2, pp. 159–166, 1984.

R. T. Wetherald and S. Manabe, “Cloud cover and climate sensitivity,” Journal of the Atmospheric Sciences, vol. 37. pp. 1485– 1510, 1980.

Yamamoto Giichi and Onishi Gaishi, “Absorption of Solar Radiation by Water Vapor in the Atmpsphere,” J. Meteorol., vol. 9, pp. 415– 421, 1952.

Z. Samani, “Estimating Solar Radiation and Evapotranspiration Using Minimum Climatological Data ( Hargreaves-Samani equation ).”

X. Liu, X. Mei, Y. Li, Q. Wang, J. R. Jensen, Y. Zhang, and J. R. Porter, “Evaluation of temperature-based global solar radiation models in China,” Agric. For. Meteorol., vol. 149, no. 9, pp. 1433– 1446, 2009.

M. Valipour, “Temperature analysis of reference evapotranspiration models,” Meteorol. Appl., vol. 22, no. 3, pp. 385–394, Jul. 2015.

F.-P. Eto and E. Y. Kra, “Hargreaves Equation as an All-Season Simulator of Daily,” vol. 1, no. 2, pp. 43–52, 2013.

H. Li, F. Cao, X. Wang, and W. Ma, “A temperature-based model for estimating monthly average daily global solar radiation in China.,” ScientificWorldJournal., vol. 2014, p. 128754, 2014.

R. Meenal, P. G. Boazina, and A. I. Selvakumar, “Temperature based Radiation Models for the Estimation of Global Solar Radiation at Horizontal Surface in India,” Indian J. Sci. Technol., vol. 9, no. 46, 2016.

A. A. El-Sebaii, F. S. Al-Hazmi, A. A. Al-Ghamdi, and S. J. Yaghmour, “Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia,” Appl. Energy, vol. 87, no. 2, pp. 568–576, 2010.

C. K. Pandey and A. K. Katiyar, “Solar Radiation : Models and Measurement Techniques,” vol. 2013, 2013.

B. de Jong, Net Radiation received by a Horizontal Surface at the Earth. Deft University Press, 1973.

M. S. Okundamiya, J. O. Emagbetere, and E. A. Ogujor, “Evaluation of Various Global Solar Radiation Models for Nigeria,” Int. J. Green Energy, vol. 5075, no. December, 2015.

H. Mitasova and H. L. Allen, “Estimating monthly solar radiation in south-central chile,” Chil. J. Agric. Res., vol. 71, no. December, 2011.

C. Aguilar, M. J. Polo, and F. Dynamics, “Generating reference evapotranspiration surfaces from the Hargreaves equation at watershed scale,” Hydrol. Earth Syst. Sci., vol. 15, pp. 2495–2508, 2011.

I. Journal, S. E. Planning, and M. Vol, “Estimation of the Global Solar Energy Potential and Photovoltaic Cost,” Int. J. Sustain. Energy Plan. Manag., vol. 9, pp. 17–30, 2016.

R. G. Allen, “Self-Calibrating Method for Estimating Solar Radiation from Air Temperature,” J. Hydrol. Eng., vol. 2, no. 2, pp. 56–67, 1997.

G. H. Hargreaves and Z. A. Samani, “Estimating Potential Evapotranspiration,” J. Irrig. Drain. Div., vol. 108, no. 3, pp. 225– 230, 1982.

A. Q. Jakhrani, A. K. Othman, and S. R. Samo, “Model for Estimation of Global Solar Radiation in Sarawak, Malaysia 1,” World Appl. Sci. J., vol. 14, pp. 83–90, 2011.

N. A. Krivova, S. K. Solanki, and Y. C. Unruh, “Towards a long-term record of solar total and spectral irradiance,” J. Atmos. SolarTerrestrial Phys., vol. 73, no. 2–3, pp. 223–234, 2011.

D. R. Myers, “Solar Radiation Modeling and Measurements for Renewable Energy Applications : Data and Model Quality Preprint,” International Expert Conference on Mathematical Modeling of Solar Radiation and Daylight—Challenges for the 21st Century, 2003, no. March, 2008.

J. I. Prieto, C. Mart, and D. Garc, “Correlation between global solar radiation and air temperature in Asturias , Spain,” Sol. Energy, no. 83, 2009.

A. A. Osinowo and E. C. Okogbue, “Correlation of Global Solar Irradiance with some Meteorological Parameters and Validation of some Existing Solar Radiation Models with Measured Data Over Selected Climatic Zones In Nigeria.” Int. J. Innov. Educ. Res., vol. 2, no. 1924, pp. 41–56, 2014.

D. Vecan, “Measurement And Comparison Of Solar Radiation Estimation Models For Izmir / Turkey : Izmir Institute Of Technology Case,” 2011.

F. A. Dimas, “Hourly solar radiation estimation from limited meteorological data to complete missing solar radiation data,” in International Conference on Environment Science and Engineering, 2011, vol. 8, pp. 14–18.

W. Modeling and G. Energy, “Solar Radiation Measurements,” 2013.

C. Gueymard, F. Solar, S. Road, and C. Canaveral, “Critical Analysis And Performance Assessment Of Clear Sky Solar Irradiance Models Using Theoretical And Measured Data,” vol. 51, no. 2, pp. 121–138, 1993.

A. . Muzathik, W. B. . Nik, M. Z. Ibrahim, K. B. Samo, K. Sopian, and M. A. Alghoul, “Daily Global Solar Radiation Estimate Based On Sunshine Hours,” Int. J. Mech. Mater. Eng. (IJMME), vol. 6, no. 1, pp. 75–80, 2011.

L. Morales-salinas and E. González-rodríguez, “A Simple Physical Model To Estimate Global Solar,” vol. 1.

A. Waple, M. Mann, and R. Bradley, “Long-term patterns of solar irradiance forcing in model experiments and proxy based surface temperature reconstructions,” Clim. Dyn., vol. 18, no. 7, pp. 563–578.

T. C. Peterson and R. S. Vose, “An Overview of the Global Historical Climatology Network Temperature Database,” Bull. Am. Meteorol. Soc., vol. 78, no. 12, pp. 2837–2849, 1997.

M. J. Menne, I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, “An overview of the global historical climatology network-daily database,” J. Atmos. Ocean. Technol., vol. 29, no. 7, pp. 897–910, 2012.

T. C. Peterson, R. Vose, R. Schmoyer, and V. Razuvav, “Global historical climatology network (GHCN) quality control of monthly temperature data,” Int. J. Climatol., vol. 18, no. 11, pp. 1169–1179, 1998.

J. H. Lawrimore, M. J. Menne, B. E. Gleason, C. N. Williams, D. B. Wuertz, R. S. Vose, and J. Rennie, “An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3,” Journal of Geophysical Research Atmospheres, vol. 116, no. 19. 2011.

A. Q. Jakhrani, A. Othman, A. Ragai, H. Rigit, S. R. Samo, and S. A. Kamboh, “A Simplified Analytical Method For Size Optimization Of A Standalone Pv System,” vol. X, no. 2, pp. 9–18, 2014.

A. Q. Jakhrani, A. Othman, A. Ragai, H. Rigit, and S. R. Samo, “Determination and Comparison of Different Photovoltaic Module Temperature Models for Kuching , Sarawak,” IEEE, p. 51111, 2011.

A. Qayoom, A. Othman, A. Ragai, H. Rigit, S. Raza, and S. Ahmed, “A novel analytical model for optimal sizing of standalone photovoltaic systems,” Energy, vol. 46, no. 1, pp. 675–682, 2012.

G. E. Hassan, M. E. Youssef, Z. E. Mohamed, M. A. Ali, and A. A. Hanafy, “New Temperature-based Models for Predicting Global Solar Radiation,” Appl. Energy, vol. 179, pp. 437–450, 2016.

S. Ibrahim, I. Daut, Y. M. Irwan, M. Irwanto, N. Gomesh, and Z. Farhana, “Linear Regression Model in Estimating Solar Radiation in Perlis,” Energy Procedia, vol. 18, pp. 1402–1412, 2012.

M. Li, L. Fan, H. Liu, P. Guo, and W. Wu, “Journal of Atmospheric and Solar-Terrestrial Physics A general model for estimation of daily global solar radiation using air temperatures and site geographic parameters in Southwest China,” J. Atmos. Solar-Terrestrial Phys., vol. 92, pp. 145–150, 2013.

E. Quansah, L. K. Amekudzi, K. Preko, J. Aryee, O. R. Boakye, D. Boli, and M. R. Salifu, “Empirical Models for Estimating Global Solar Radiation over the Ashanti Region of Ghana,” J. Sol., vol. 2014, pp. 9–12, 2014.

M. D. C. Alves, L. Sanches, J. D. S. Nogueira, V. Augusto, and M. Silva, “Effects of Sky Conditions Measured by the Clearness Index on the Estimation of Solar Radiation Using a Digital Elevation Model,” Atmos. Clim. Sci., vol. 2013, no. October, pp. 618–626, 2013.

M. Iqbal, An introduction to Solar Radiation. Academic Press, 1983.

S. Hossain, K. Homma, T. Shiraiwa, S. Hossain, K. Homma, and T. Shiraiwa, “Decadal and Monthly Change of an Empirical Coefficient in the Relation between Solar Radiation and the Daily Range of Temperature in Japan : Implications for the Estimation of Solar Radiation Based on Temperature Decadal and Monthly Change of an Empirical,” Plant Prod. Sci., vol. 1008, no. August 2016, 2015.

A. Usman, M. Akhtar, and K. Jamil, “Empirical Models for the Estimation of Global Solar Radiation with Sunshine Hours on Horizontal Surface in Various Cities of Pakistan,” Pakistan J. Meteorol., vol. 9, no. 18, pp. 43–49, 2013.

D. O. Akpootu and W. Mustapha, “Estimation of Diffuse Solar Radiation for Yola , Adamawa State , North- Eastern , Nigeria,” Int.Res. J. Eng. Technol., pp. 77–82, 2015.

A. A. Osinowo and E. C. Okogbue, “Correlation of Global Solar Irradiance with some Meteorological Parameters and Validation of some Existing Solar Radiation Models with Measured Data Over Selected Climatic Zones In Nigeria . Abstrac ` t Introduction ”,” vol. 2, no. 1924, pp. 1–7, 2014.

S. T. Mulaudzi, “Solar radiation analysis and regression coefficients for the Vhembe Region , Limpopo Province , South Africa,” J. Energy South. Africa, vol. 24, no. 3, pp. 3–8, 2013.

R. K. Swartman and O. Ogunlade, “A statistical relationship between solar radiation ,sunshine and relative humidity in the tropics,” Atmosphere (Basel)., vol. 5, no. 2, pp. 25–34, 1967.

M. Yorukoglu and A. N. Celik, “A critical review on the estimation of daily global solar radiation from sunshine duration,” vol. 47, pp. 2441–2450, 2006.

D. Petreuş, I. Ciocan, and C. Fǎrcaş, “An improvement on empirical modelling of photovoltaic cells,” in 31st International Spring Seminar on Electronics Technology: Reliability and Life-time Prediction, ISSE 2008, 2008, pp. 598–603.

S. Shahidian, R. Serralheiro, J. Serrano, and S. De Agronomia, “Hargreaves and Other Reduced-Set Methods for Calculating Evapotranspiration,” in Remote Sensing and Modeling, vol. 23, 1998, pp. 59–81.

A. Ben, S. Rafa, and N. Essounbouli, “Estimation of Global Solar Radiation Using Three Simple Methods,” Energy Procedia, vol. 42, pp. 406–415, 2013.

CRA. Climatology Solar Radiation, “Clear sky transmissivity,” JRCIPSC, 2009.

O. O. Aladenola and C. A. Madramootoo, “Evaluation of solar radiation estimation methods for reference evapotranspiration estimation in Canada,” Theor Appl Clim., pp. 377–385, 2014.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

ISSN: 2180-1843

eISSN: 2289-8131