The Effect of pH Solution on Electrodeposit-N-Cu2O Thin Film

Fariza Mohamad, Nabiah Zinal, Lau Kae Lih, Nik Hisyamudin Muhd Nor, Masanobu Izaki


n-type semiconducting Cu2O thin film was successfully prepared on FTO coated glass substrate using electrodeposition method. The effect of pH solution was studied in order to optimize the deposition parameters of n-Cu2O. The solution was prepared using copper acetate and acid lactic. The pH solution was accurately adjusted using potassium hydroxide and varied from 3.5 until 6.5. The n-Cu2O was successfully deposited at higher pH solution from 5.5 until 6.5. Moreover, it showed excellent structural characteristic and good morphology properties. The Cu2O was adsorbed light at approximately 600 nm corresponding to the bandgap of 2.0 eV. The successful fabrication of n-Cu2O was confirmed and the significant effect of pH solution was observed.


Electrodeposition; n-Cu2O; pH Solution;

Full Text:



Mizuno K., Izaki M., Murase K., Shinagawa T., Chigane M., Inaba M., Takasa A., and Awakura A., “Structural and Electrical Characterizations of Electrodeposited p-Type Semiconductor Cu2O Films”, J. Electrochem. Soc., 152, 2005, pp.C179-C182.

Shockley W. and Queisser H. J., “Detailed Balance Limit of Efficiency of pn Junction Solar Cells”, J. Appl. Phys., vol.32, no.3, 1961, pp.510-519.

Fariza B. M., Sasano J., Shinagawa T., Nakano H., Watase S., and Izaki M., “Electrochemical Growth of (0001)-n-ZnO Film on (111)-p-Cu2O Film and the Characterization of the Heterojunction Diode”, J. Electrochem. Soc., vol.158, no.10, 2011, pp. D621-D625.

Fariza B. M., Sasano J., Shinagawa T., Watase S., and Izaki M., “Lightassisted electrochemical construction of 111)Cu2O/(0001)ZnO heterojunction”, Thin Solid Films, vol.520, no.6, 2012, pp.2261-2264.

Green M. A. and Keevers M. J., “Optical properties of intrinsic silicon at 300 K”, Prog. Photovoltaics, vol.3, 1995. 189-192.

Mittiga A., Salza E., Sarto F., Tucci M. and Vasanthi R., “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate”, Appl. Phys. Lett., vol.88, 2006, pp.163502.

Izaki M., Shinagawa T., Mizuno K., Ida Y., Inaba M., and Tasaka A.,

“Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode

for photovoltaic device”, J. Phys. D: Appl. Phys., vol.40, no.11, 2007,pp.3326.

Paul G. K., Ghosh R., Bera S. K., Bandyopadhyay S., Sakurai T., and Akimoto K., “Deep level transient spectroscopy of cyanide treated polycrystalline p-Cu2O/n-ZnO solar cell”, Chem. Phys. Lett., vol.463, 2008, pp.117-120.

Minami T., Nishi Y. and Miyata T., “High-Efficiency Cu2O-Based Heterojunction Solar Cells Fabricated Using a Ga2O3 Thin Film as NType Layer”, Appl. Phys. Express, vol.6, no.4, 2013, pp.044101.

Therese G. H. A. and Kamath P. V., “Electrochemical synthesis of metal oxide hydroxides”, Chem. Mater., vol.12, no.5, 2000, pp.1195-1204.

Han K. and Tao M., “Electrochemically deposited p-n homojunction cuprous oxide solar cells”, Sol. Energ. Mater. & Sol C., vol.93, no.1,2009, pp.153-157.

Han K., Han K. and Tao M., “Characterization of Cl-doped n-type Cu2O prepared by electrodeposition”, Thin Solid Films, vol.518, no.19,2010, pp.5363-5367.

Wang L. and Tao M., “Fabrication and Characterization of p-n Homojunctions in Cuprous Oxide by Electrochemical Deposition”, Electrochemical and Solid-State Letters, vol.10, no.9, 2007, pp.H248-H250.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

ISSN: 2180-1843

eISSN: 2289-8131