OPTIMIZATION OF COMPRESSION MOULDING PARAMETERS FOR MULTI FILLER POLYMER COMPOSITE USING TAGUCHI METHOD

N.A. Jamil, M.Z. Selamat, R. Hasan, M.A.M. Daud, M.M. Tahir

Abstract


Polymer Electrolyte Membrane Fuel Cells (PEMFC) performance depends on the properties of bipolar plates (BP). In order to produce the best performance of BP, compression moulding parameters need to be optimized. This study determined the compression moulding parameters of Graphite (G) / Carbon Black (CB) / Carbon Fiber (CF) / Polypropylene (PP) composites using Taguchi method (TM) in order to optimize the properties of BP plate. L9 Orthogonal Array with four factors and three levels was chosen as a design of experiment for G/CB/CF/PP composition with a weight percentage of 50/25/5/20. The factors selected for this study were heating temperature, load, preheating pressing time and pressing time. The electrical conductivity value of each sample was analyzed by signal to noise ratio using TM with the larger-the-better condition in order to determine the optimum parameters. Confirmation experiment was conducted to validate the optimum parameters obtained from the TM. The electrical conductivity result of G/CB/CF/PP composites for confirmation experiment was 393.49 S/cm and it was higher than nine trials and the TM predicted value. Hence, the optimum parameters of compression moulding can be obtained using TM to improve the electrical conductivity of G/CB/CF/PP composites. TM is an effective way to get the optimal moulding parameters for G/CB/CF/PP composites and is very useful to fabricate bipolar plate for PEMFC.

Full Text:

PDF FLIPBOOK

References


H. Suherman, A. B. Sulong, and J. Sahari, “Effect of the compression molding parameters on the in-plane and through-plane conductivity of carbon nanotubes/graphite/epoxy nanocomposites as bipolar plate material for a polymer electrolyte membrane fuel cell,” Ceram. Int., vol. 39, no. 2, pp. 1277–1284, Mar. 2013.

H. Suherman, J. Sahari, and A. B. Sulong, “Effect of small-sized conductive filler on the properties of an epoxy composite for a bipolar plate in a PEMFC,” Ceram. Int., vol. 39, no. 6, pp. 7159–7166, Aug. 2013.

H. Suherman and U. Bung, “Optimization of Moulding Parameters on the Electrical Conductivity of Carbon Black / Graphite / Epoxy Composite for Bipolar Plateusing the Taguchi Method,” no. January, 2016.

M. Z. Selamat, J. Sahari, A. Muchtar, and N. Muhamad, “Simultaneous optimization for multiple responses on the compression moulding parameters of composite graphite - Polypropylene using taguchi method,” Key Eng. Mater., vol. 471–472, pp. 361–366, 2011.

J. W. Klett and J. J. Henry, “Carbon Composite Bipolar Plates,” Fuel Cell, pp. 1–4, 2008.

J. H. Hirschenhofer, D. B. Stauffer, R. R. Engleman, and M. G. Klett, FUEL Fuel Cell Handbook FUEL, Forth edit. 1998.

J. O. Jensen, “Proton Exchange Membrane Fuel Cells,” Mater. Sci., pp. 1–10, 2008.

I. EG&G Technical Services, “Fuel Cell Handbook,” 2004.

T. M. Besmann, J. J. Henry, and J. W. Klett, “Carbon Composite Bipolar Plate for PEM Fuel Cells,” 2002.

A. Kasgoz, D. Akın, and A. Durmus, “Rheological and electrical properties of carbon black and carbon fiber filled cyclic olefin copolymer composites,” Compos. Part B Eng., vol. 62, pp. 113–120, Jun. 2014.

A. Bairan, M. Z. Selamat, S. N. Sahadan, S. D. Malingam, and N. Mohamad, “Effect of Carbon Nanotubes Loading in Multifiller Polymer Composite as Bipolar Plate for PEM Fuel Cell,” Procedia Chem., vol. 19, pp. 91–97, 2016.

M. Z. Selamat, J. Sahari, N. Muhamad, and A. Muchtar, “The effects of thickness reduction and particle sizes on the properties graphite - Polypropylene composite,” Int. J. Mech. Mater. Eng., vol. 6, no. 2, pp. 194–200, 2011.

R. Dweiri and J. Sahari, “Electrical properties of carbon-based polypropylene composites for bipolar plates in polymer electrolyte membrane fuel cell (PEMFC),” J. Power Sources, vol. 171, no. 2, pp. 424–432, Sep. 2007.

J. H. Lee, Y. K. Jang, C. E. Hong, N. H. Kim, P. Li, and H. K. Lee, “Effect of carbon fillers on properties of polymer composite bipolar plates of fuel cells,” J. Power Sources, vol. 193, no. 2, pp. 523–529, Sep. 2009.

E. Planes, L. Flandin, and N. Alberola, “Polymer Composites Bipolar Plates for PEMFCs,” Energy Procedia, vol. 20, pp. 311–323, 2012.

H. N. Yu, I. U. Hwang, S. S. Kim, and D. G. Lee, “Integrated carbon composite bipolar plate for polymer-electrolyte membrane fuel cells,” J. Power Sources, vol. 189, no. 2, pp. 929–934, 2009.

A. Kasgoz, D. Akın, A. İ. Ayten, and A. Durmus, “Effect of different types of carbon fillers on mechanical and rheological properties of cyclic olefin copolymer (COC) composites,” Compos. Part B Eng., vol. 66, pp. 126–135, Nov. 2014.

D. Akın, A. Kasgoz, and A. Durmus, “Quantifying microstructure, electrical and mechanical properties of carbon fiber and expanded graphite filled cyclic olefin copolymer composites,” Compos. Part A Appl. Sci. Manuf., vol. 60, pp. 44–51, May 2014.

H. Suherman and U. Bung, “Optimization of Moulding Parameters on the Electrical Conductivity of Carbon Black / Graphite / Epoxy Composite for Bipolar Plateusing the Taguchi Method,” no. September 2016, 2015.

Y. Wang and D. O. Northwood, “Optimization of the polypyrrole-coating parameters for proton exchange membrane fuel cell bipolar plates using the Taguchi method,” J. Power Sources, vol. 185, no. 1, pp. 226–232, 2008.

Y. Sadelil, J. W. Soedarsono, B. Prihandoko, and S. Harjanto, “The Effects of Gompression Pressure Applied on the Manufacture of Carbon Composite Bipolar Plate for PEMFC by Utilizing Graphite Waste Products,” Adv. Mater. Res., vol. 42, pp. 6–66, 2012.




© Journal of Advanced Manufacturing Technology